Journal of Inequalities in Pure and Applied Mathematics

ON MULTIPLICATIVELY e-PERFECT NUMBERS

JÓZSEF SÁNDOR

Department of Mathematics Babeş-Bolyai University Str. Kogalniceanu, 400084 Cluj-Napoca Romania.

EMail: jsandor@math.ubbcluj.ro

volume 5, issue 4, article 114, 2004.

Received 14 June, 2004; accepted 16 December, 2004. Communicated by: L. Tóth

Abstract
Contents

Home Page
Go Back
Close
Quit

©2000 Victoria University ISSN (electronic): 1443-5756 120-04

Abstract

Let $T_e(n)$ denote the product of exponential divisors of n. An integer n is called multiplicatively e-perfect, if $T_e(n) = n^2$. A characterization of multiplicatively e-perfect and similar numbers is given.

2000 Mathematics Subject Classification: 11A25, 11A99.

Key words: Perfect number, exponential divisor, multiplicatively perfect, sum of divisors, number of divisors.

Contents

1	Introduction	3
2	Main Results	5
Refe	erences	

On Multiplicatively *e*-Perfect Numbers

József Sándor

Title Page

Contents

Go Back

Close

Quit

Page 2 of 10

1. Introduction

If $n=p_1^{\alpha_1}\dots p_r^{\alpha_r}$ is the prime factorization of n>1, a divisor d|n, called an exponential divisor (e-divisor, for short), of n is $d=p_1^{b_1}\dots p_r^{b_r}$ with $b_i|\alpha_i$ ($i=\overline{1,r}$). This notion is due to E. G. Straus and M. V. Subbarao [11]. Let $\sigma_e(n)$ be the sum of divisors of n. For various arithmetic functions and convolutions on e-divisors, see J. Sándor and A. Bege [10]. Straus and Subbarao define n as exponentially perfect (or e-perfect for short) if

$$\sigma_e(n) = 2n.$$

Some examples of e-perfect numbers are: $2^2 \cdot 3^2$, $2^2 \cdot 3^3 \cdot 5^2$, $2^4 \cdot 3^2 \cdot 11^2$, $2^4 \cdot 3^3 \cdot 5^2 \cdot 11^2$, etc. If m is squarefree, then $\sigma_e(m) = m$, so if n is e-perfect, and m = squarefree with (m,n) = 1, then $m \cdot n$ is e-perfect, too. Thus it suffices to consider only powerful (i.e. no prime occurs to the first power) e-perfect numbers.

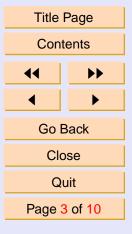
Straus and Subbarao [11] proved that there are no odd e-perfect numbers, and that for each r the number of e-perfect numbers with r prime factors is finite.

Is there an e-perfect number which is not divisible by 3? Straus and Subbarao conjecture that there is only a finite number of e-perfect numbers not divisible by any given prime p.

- J. Fabrykowski and M.V. Subbarao [3] proved that any e-perfect number not divisible by 3 must be divisible by 2^{117} , greater than 10^{664} , and have at least 118 distinct prime factors.
 - P. Hagis, Jr. [4] showed that the density of *e*-perfect numbers is positive.

On Multiplicatively *e*-Perfect Numbers

József Sándor



J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au For results on e-multiperfect numbers, i.e. satisfying

(1.2)
$$\sigma_e(n) = kn$$

(k>2), see W. Aiello, G. E. Hardy and M. V. Subbarao [1]. See also J. Hanumanthachari, V. V. Subrahmanya Sastri and V. Srinivasan [5], who considered also e-superperfect numbers, i.e. numbers n satisfying

(1.3)
$$\sigma_e(\sigma_e(n)) = 2n.$$

On Multiplicatively *e*-Perfect Numbers

József Sándor

Title Page

Contents

Go Back

Close

Quit

Page 4 of 10

2. Main Results

Let T(n) denote the *product* of divisors of n. Then n is said to be multiplicatively perfect (or m-perfect) if

$$(2.1) T(n) = n^2$$

and multiplicatively super-perfect, if

$$T(T(n)) = n^2.$$

For properties of these numbers, with generalizations, see J. Sándor [8].

A divisor d of n is said to be "unitary" if $\left(d,\frac{n}{d}\right)=1$. Let $T^*(n)$ be the product of unitary divisors of n. A. Bege [2] has studied the multiplicatively unitary perfect numbers, and proved certain results similar to those of Sándor. He considered also the case of "bi-unitary" divisors.

The aim of this paper is to study the multiplicatively e-perfect numbers. Let $T_e(n)$ denote the product of e-divisors of n. Then n is called multiplicatively e-perfect if

$$(2.2) T_e(n) = n^2,$$

and multiplicatively e-superperfect if

(2.3)
$$T_e(T_e(n)) = n^2.$$

The main result is contained in the following:

On Multiplicatively e-Perfect Numbers

József Sándor

Title Page

Contents

Go Back

Close

Quit

Page 5 of 10

Theorem 2.1. n is multiplicatively e-perfect if and only if $n = p^{\alpha}$, where p is a prime and α is an ordinary perfect number. n is multiplicatively e-superperfect if and only if $n = p^{\alpha}$, where p is a prime, and α is an ordinary superperfect number, i.e. $\sigma(\sigma(\alpha)) = 2\alpha$.

Proof. First remark that if p prime,

$$T_e(p^{\alpha}) = \prod_{d|\alpha} p^{\alpha} = p^{\sum_{d|\alpha} d} = p^{\sigma(\alpha)}.$$

Let $n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$. Then the exponential divisors of n have the form $p_1^{d_1}\cdots p_r^{d_r}$ where $d_1|\alpha_1,\ldots,d_r|\alpha_r$. If d_1,\ldots,d_{r-1} are fixed, then these divisors are $p_1^{d_1}\cdots p_{r-1}^{d_{r-1}}p_r^d$ with $d|\alpha_r$ and the product of these divisors is $p_1^{d_1d(\alpha_r)}\cdots p_{r-1}^{d_{r-1}d(\alpha_r)}p_r^{\sigma(\alpha_r)}$, where d(a) is the number of divisors of a, and $\sigma(a)$ denotes the sum of divisors of a. For example, when r=2, we get $p_1^{d_1d(\alpha_2)}p_2^{\sigma(\alpha_2)}$. The product of these divisors is $p_1^{\sigma(d_1)d(\alpha_2)}p_2^{\sigma(\alpha_2)d(\alpha_1)}$. In the general case (by first fixing d_1,\ldots,d_{r-2} , etc.), it easily follows by induction that the following formula holds true:

(2.4)
$$T_e(n) = p_1^{\sigma(\alpha_1)d(\alpha_2)\cdots d(\alpha_r)} \cdots p_r^{\sigma(\alpha_r)d(\alpha_1)\cdots d(\alpha_{r-1})}$$

Now, if n is multiplicatively e-perfect, by (2.2), and the unique factorization theorem it follows that

(2.5)
$$\begin{cases} \sigma(\alpha_1)d(\alpha_2)\cdots d(\alpha_r) = 2\alpha_1 \\ \cdots \\ \sigma(\alpha_r)d(\alpha_1)\cdots d(\alpha_{r-1}) = 2\alpha_r \end{cases}$$

On Multiplicatively *e*-Perfect Numbers

József Sándor

Title Page

Contents

Go Back

Close

Quit

Page 6 of 10

This is impossible if all $\alpha_i = 1$ $(i = \overline{1,r})$. If at least an $\alpha_i = 1$, let $\alpha_1 = 1$. Then $d(\alpha_2) \cdots d(\alpha_r) = 2$, so one of $\alpha_2, \ldots, \alpha_r$ is a prime, the others are equal to 1. Let $\alpha_2 = p$, $\alpha_3 = \cdots = \alpha_r = 1$. But then the equation $\sigma(\alpha_2)d(\alpha_1)d(\alpha_3)\cdots d(\alpha_r) = 2\alpha_2$ of (2.5) gives $\sigma(\alpha_2) = 2\alpha_2$, i.e. $\sigma(p) = 2p$, which is impossible since p + 1 = 2p.

Therefore, we must have $\alpha_i \geq 2$ for all $i = \overline{1, r}$.

Let $r \ge 2$ in (2.5). Then the first equation of (2.5) implies

$$\sigma(\alpha_1)d(\alpha_2)\cdots d(\alpha_r) \ge (\alpha_1+1)\cdot 2^{r-1} \ge 2(\alpha_1+1) > 2\alpha_1,$$

which is a contradiction. Thus we must have r=1, when $n=p_1^{\alpha_1}$ and $T_e(n)=p_1^{\sigma(\alpha_1)}=n^{2\alpha_1}$ iff $\sigma(\alpha_1)=2\alpha_1$, i.e. if α_1 is an ordinary perfect number. This proves the first part of the theorem.

By (2.4) we can write the following complicated formula:

$$(2.6) \quad T_e(T_e(n)) = p_1^{\sigma(\sigma(\alpha_1)d(\alpha_2)\cdots d(\alpha_r))\cdots d(\sigma(\alpha_r)d(\alpha_1)\cdots d(\alpha_{r-1}))} \\ \cdots p_r^{\sigma(\sigma(\alpha_r)d(\alpha_1)\cdots d(\alpha_{r-1}))\cdots d(\sigma(\alpha_1)d(\alpha_2)\cdots d(\alpha_r))}.$$

Thus, if n is multiplicatively e-superperfect, then

(2.7)
$$\begin{cases} \sigma(\sigma(\alpha_1)d(\alpha_2)\cdots d(\alpha_r))\cdots d(\sigma(\alpha_r)d(\alpha_1)\cdots d(\alpha_{r-1})) = 2\alpha_1 \\ \cdots \\ \sigma(\sigma(\alpha_r)d(\alpha_1)\cdots d(\alpha_{r-1}))\cdots d(\sigma(\alpha_1)d(\alpha_2)\cdots d(\alpha_r)) = 2\alpha_r \end{cases}.$$

As above, we must have $\alpha_i \geq 2$ for all $i = 1, 2, \dots, r$.

But then, since $\sigma(ab) \geq a\sigma(b)$ and $\sigma(b) \geq b+1$ for $b \geq 2$, (2.7) gives a contradiction, if $r \geq 2$. For r = 1, on the other hand, when $n = p_1^{\alpha_1}$ and

On Multiplicatively *e*-Perfect Numbers

József Sándor

Title Page
Contents

Go Back

Close

Quit

Page 7 of 10

J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au $T_e(n) = p_1^{\sigma(\alpha_1)}$ we get $T_e(T_e(n)) = p_1^{\sigma(\sigma(\alpha_1))}$, and (2.3) implies $\sigma(\sigma(\alpha_1)) = 2\alpha_1$, i.e. α_1 is an ordinary superperfect number.

Remark 2.1. No odd ordinary perfect or superperfect number is known. The even ordinary perfect numbers are given by the well-known Euclid-Euler theorem: $n = 2^k p$, where $p = 2^{k+1} - 1$ is a prime ("Mersenne prime"). The even superperfect numbers have the general form (given by Suryanarayana-Kanold [12], [6]) $n = 2^k$, where $2^{k+1} - 1$ is a prime. For new proofs of these results, see e.g. [7], [9].

On Multiplicatively *e*-Perfect Numbers

József Sándor

References

- [1] W. AIELLO, G.E. HARDY AND M.V. SUBBARAO, On the existence of *e*-multiperfect numbers, *Fib. Quart.*, **25** (1987), 65–71.
- [2] A. BEGE, On multiplicatively unitary perfect numbers, *Seminar on Fixed Point Theory*, Cluj-Napoca, **2** (2001), 59–63.
- [3] J. FABRYKOWSKI AND M.V. SUBBARAO, On *e*-perfect numbers not divisible by 3, *Nieuw Arch. Wiskunde*, **4**(4) (1986), 165–173.
- [4] P. HAGIS, JR., Some results concerning exponential divisors, *Intern. J. Math. Math. Sci.*, **11**(1988), 343–349.
- [5] J. HANUMANTHACHARI, V.V. SUBRAHMANYA SASTRI AND V. SRINIVASAN, On *e*-perfect numbers, *Math. Student*, **46**(1) (1978), 71–80.
- [6] H.J. KANOLD, Über super-perfect numbers, *Elem. Math.*, **24**(1969), 61–62.
- [7] J. SÁNDOR, On the composition of some arithmetic functions, *Studia Univ. Babeş-Bolyai Math.*, **34**(1) (1989), 7–14.
- [8] J. SÁNDOR, On multiplicatively perfect numbers, *J. Ineq. Pure Appl. Math.*, **2**(1) (2001), Art. 3, 6 pp. (electronic). [ONLINE http://jipam.vu.edu.au/article.php?sid=119]
- [9] J. SÁNDOR, On an even perfect and superperfect number, *Notes Number Theory Discr. Math.*, **7**(1) (2001), 4–5.

On Multiplicatively e-Perfect Numbers

József Sándor

J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au

- [10] J. SÁNDOR AND A. BEGE, The Möbius function: generalizations and extensions, *Adv. Stud. Contemp. Math.*, **6**(2) (2003), 77–128.
- [11] E.G. STRAUS AND M.V. SUBBARAO, On exponential divisors, *Duke Math. J.*, **41** (1974), 465–471.
- [12] D. SURYANARAYANA, Super-perfect numbers, *Elem. Math.*, **24** (1969), 16–17.

On Multiplicatively *e*-Perfect Numbers

József Sándor

Title Page
Contents

Go Back

Close

Quit

Page 10 of 10