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ABSTRACT. In this paper, by combining a new maximum principle of fourth-order equations
with the theory of eigenline problems, we develop a monotone method in the presence of lower
and upper solutions for some fourth-order ordinary differential equation boundary value prob-
lem. Our results indicate there is a relation between the existence of solutions of nonlinear
fourth-order equation and the first eigenline of linear fourth-order equation.
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1. I NTRODUCTION

This paper consider solutions of the fourth-order boundary value problem

(1.1) u(4)(x) = f(x, u(x), u′′(x)), 0 < x < 1,

(1.2) u(0) = u(1) = u′′(0) = u′′(1) = 0,

wheref : [0, 1]× R× R −→ R is continuous.
Many authors [1] – [8], [10], [11], [13] – [17] have studied this problem. In [1, 4, 6, 8,

10, 16], Aftabizadehet al. showed the existence of positive solution to (1.1) – (1.2) under
some growth conditions off and a non-resonance condition involving a two-parameter linear
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2 ZHANBING BAI , WEIGAO GE, AND Y IFU WANG

eigenvalue problem. These results are based upon the Leray–Schauder continuation method
and topological degree. In [2, 5, 7, 11, 15], Agarwalet al. considered an equation of the form

u(4)(x) = f(x, u(x)),

with diverse kind of boundary conditions by using the lower and upper solution method.
Recently, Bai [3] and Maet al. [14] developed the monotone method for the problem (1.1)

– (1.2) under some monotone conditions off . More recently, with using Krasnosel’skii fixed
point theorem, Li [13] showed the existence results of positive solutions for the following prob-
lem

u(4) + βu′′ − αu = f(t, u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

wheref : [0, 1]×R+ → R+ is continuous,α, β ∈ R andβ < 2π2, α ≥ −β2/4, α/π4 +β/π2 <
1.

In this paper, by the use of a new maximum principle of fourth-order equation and the theory
of the eigenline problem, we intend to further relax the monotone condition off and get the
iteration solution. Our results indicate there exists some relation between the existence of pos-
itive solutions of nonlinear fourth-order equation and the first eigenline of linear fourth-order
equation.

2. M AXIMUM PRINCIPLE

In this section, we prove a maximum principle for the operator

L : F −→ C[0, 1]

defined byLu = u(4) − au′′ + bu. Herea, b ∈ R satisfy

(2.1)
a

π2
+

b

π4
+ 1 > 0, a2 − 4b ≥ 0, a > −2π2;

u ∈ F and

F = {u ∈ C4[0, 1] | u(0) = 0, u(1) = 0, u′′(0) ≤ 0, u′′(1) ≤ 0}.

Lemma 2.1. [12] Let f(x) be continuous fora ≤ x ≤ b and letc < λ1 = π2/(b− a)2. Letu
satisfies

u′′(x) + cu(x) = f(x), for x ∈ (a, b),

u(a) = u(b) = 0.

Assume thatu(x1) = u(x2) = 0 wherea ≤ x1 < x2 ≤ b andu(x) 6= 0 for x1 ≤ x ≤ x2. If
eitherf(x) ≥ 0 for all x ∈ [x1, x2] or f(x) ≤ 0 for all x ∈ [x1, x2] andf(x) is not identically
zero on[x1, x2], thenu(x)f(x) ≤ 0 for all x ∈ [x1, x2].

Lemma 2.2. If u(x) satisfies

u′′ + cu(x) ≥ 0, for x ∈ (a, b)

u(a) ≤ 0, u(b) ≤ 0,

wherec < λ1 = π2/(b− a)2. Thenu(x) ≤ 0, in [a, b].

Proof. It follows by Lemma 2.1. �

Lemma 2.3. If u ∈ F satisfiesLu ≥ 0, thenu ≥ 0 in [0, 1].
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Proof. SetAx = x′′. As a, b ∈ R satisfy (2.1), we have that

Lu = u(4) − au′′ + bu = (A− r2)(A− r1)u ≥ 0,

wherer1,2 = (a ±
√

a2 − 4b)/2 ≥ −π2. In fact, r1 = (a +
√

a2 − 4b)/2 ≥ r2 = (a −√
a2 − 4b)/2. By a/π2+b/π4+1 > 0, we haveaπ2+b+π4 > 0, thusa2+4aπ2+4π4 > a2−4b,

becausea2 − 4b ≥ 0, so

(a + 2π2)2 > (
√

a2 − 4b)2.

Combining this together witha > −2π2, we can conclude

a + 2π2 >
√

a2 − 4b.

Then,r1 ≥ r2 = (a−
√

a2 − 4b)/2 > −π2.
Let y = (A− r1)u = u′′ − r1u, then

(A− r2)y ≥ 0,

i.e.,

y′′ − r2y ≥ 0.

On the other hand,u ∈ F yields that

(2.2) y(0) = u′′(0)− r1u(0) ≤ 0, y(1) = u′′(1)− r1u(1) ≤ 0.

Therefore, by the use of Lemma 2.2, there exists

y(x) ≤ 0, x ∈ [0, 1],

i.e.,

u′′(x)− r1u(x) = y(x) ≤ 0.

This together with Lemma 2.2 and the fact thatu(0) = 0, u(1) = 0 implies thatu(x) ≥ 0 in
[0, 1]. �

Remark 2.4. Observe thata, b ∈ R satisfies (2.1) if and only if

(2.3) b ≤ 0,
a

π2
+

b

π4
+ 1 > 0, a > −2π2;

or

(2.4) b > 0, a > 0, a2 − 4b ≥ 0;

or

(2.5) b > 0, 0 > a > −2π2,
a

π2
+

b

π4
+ 1 > 0, a2 − 4b ≥ 0.

From (2.3) and (2.4), we can easily conclude

r1 =
a +

√
a2 − 4b

2
≥ 0.

Therefore, (2.2) can be obtained underu(0) ≥ 0, u(1) ≥ 0, u′′(0) ≤ 0, u′′(1) ≤ 0, andF
can be defined as

F = {u ∈ C4[0, 1] | u(0) ≥ 0, u(1) ≥ 0, u′′(0) ≤ 0, u′′(1) ≤ 0},

we refer the reader to [3, 13].

J. Inequal. Pure and Appl. Math., 5(1) Art. 13, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 ZHANBING BAI , WEIGAO GE, AND Y IFU WANG

Lemma 2.5. [7] Given(a, b) ∈ R2, the following problem

u(4) − au′′ + bu = 0,(2.6)

u(0) = u(1) = u′′(0) = u′′(1) = 0,(2.7)

has a non-trivial solution if and only if

a

(kπ)2
+

b

(kπ)4
+ 1 = 0,

for somek ∈ N.

3. THE M ONOTONE M ETHOD

In this section, we develop the monotone method for the fourth order two-point boundary
value problem (1.1) – (1.2).

For givena, b ∈ R satisfyinga/π2 + b/π4 + 1 > 0, a2 − 4b ≥ 0, a > −2π2 and
f : [0, 1]× R× R −→ R, let

(3.1) f1(x, u, v) = f(x, u, v) + bu− av.

Then (1.1) is equal to

(3.2) Lu = f1(x, u, u′′).

Definition 3.1. Lettingα ∈ C4[0, 1], we say thatα is an upper solution for the problem (1.1) –
(1.2) if α satisfies

α(4)(x) ≥ f(x, α(x), α′′(x)), for x ∈ (0, 1),

α(0) = 0, α(1) = 0,

α′′(0) ≤ 0, α′′(1) ≤ 0.

Definition 3.2. Lettingβ ∈ C4[0, 1], we sayβ is a lower solution for the problem (1.1) – (1.2)
if β satisfies

β(4)(x) ≤ f(x, β(x), β′′(x)), for x ∈ (0, 1),

β(0) = 0, β(1) = 0,

β′′(0) ≥ 0, β′′(1) ≥ 0.

Remark 3.1. If a, b satisfy (2.3) or (2.4), the boundary values can be replaced by

α(0) ≥ 0, α(1) ≥ 0; β(0) ≤ 0, β(1) ≤ 0.

It is clear that ifα, β are upper and lower solutions of the problem (1.1) – (1.2) respectively,
α, β are upper and lower solutions of the problem (3.2) – (1.2) respectively, too.

Theorem 3.2. If there existα andβ, upper and lower solutions, respectively, for the problem
(1.1) – (1.2) which satisfy

(3.3) β ≤ α and β′′ + r(α− β) ≥ α′′,

and iff : [0, 1]× R× R −→ R is continuous and satisfies

(3.4) f(x, u2, v)− f(x, u1, v) ≥ −b(u2 − u1),

for β(x) ≤ u1 ≤ u2 ≤ α(x), v ∈ R, andx ∈ [0, 1];

(3.5) f(x, u, v2)− f(x, u, v1) ≤ a(v2 − v1),

for v2 + r(α−β) ≥ v1, α′′− r(α−β) ≤ v1, v2 ≤ β′′+ r(α−β), u ∈ R, andx ∈ [0, 1], where
a, b ∈ R satisfya/π2 + b/π4 + 1 > 0, a2 − 4b ≥ 0, a > −2π2 andr = (a −

√
a2 − 4b)/2,
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then there exist two monotone sequences{αn} and{βn}, non-increasing and non-decreasing,
respectively, withα0 = α andβ0 = β, which converge uniformly to the extremal solutions in
[β, α] of the problem (1.1) – (1.2).

Proof. Consider the problem

(3.6) u(4)(x)− au′′(x) + bu(x) = f1(x, η(x), η′′(x)), for x ∈ (0, 1),

(3.7) u(0) = u(1) = u′′(0) = u′′(1) = 0,

with η ∈ C2[0, 1].
Sincea/π2 + b/π4 + 1 > 0, with the use of Lemma 2.5 and Fredholm Alternative [9], the

problem (3.6) – (3.7) has a unique solutionu. DefineT : C2[0, 1] −→ C4[0, 1] by

(3.8) Tη = u.

Now, we divide the proof into three steps.

Step 1. We show

(3.9) TC ⊆ C.

Here,C = {η ∈ C2[0, 1] | β ≤ η ≤ α, α′′ − r(α − β) ≤ η′′ ≤ β′′ + r(α − β)} is a
nonempty bounded closed subset inC2[0, 1].

In fact, for ζ ∈ C, setω = Tζ. By the definition ofα, β andC, combining (3.1),
(3.4), and (3.5), we have that

(α− ω)(4)(x)− a(α− ω)′′(x) + b(α− ω)(x)

≥ f1(x, α(x), α′′(x))− f1(x, ζ(x), ζ ′′(x))

= f(x, α(x), α′′(x))− f(x, ζ(x), ζ ′′(x))− a(α− ζ)′′(x) + b(α− ζ)(x) ≥ 0,(3.10)

(3.11) (α− ω)(0) = 0, (α− ω)(1) = 0,

(3.12) (α− ω)′′(0) ≤ 0, (α− ω)′′(1) ≤ 0.

With the use of Lemma 2.3, we obtain thatα ≥ ω. Analogously, there holdsω ≥ β.
By the proof of Lemma 2.3, combining (3.10), (3.11), and (3.12), we have that

(α− ω)′′(x)− r(α− ω)(x) ≤ 0, x ∈ (0, 1),

hence,

ω′′(x) + r(α− β)(x) ≥ ω′′(x) + r(α− ω)(x) ≥ α′′(x), for x ∈ (0, 1),

i.e.,

ω′′(x) ≥ α′′(x)− r(α− β)(x), for x ∈ (0, 1).

Analogously,

ω′′(x) ≤ β′′(x) + r(α− β)(x), for x ∈ (0, 1).

Thus, (3.9) holds.
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Step 2. Let u1 = Tη1, u2 = Tη2, whereη1, η2 ∈ C satisfyη1 ≤ η2 andη′′1 + r(α − β) ≥ η′′2 .
We show

(3.13) u1 ≤ u2, u′′1 + r(α− β) ≥ u′′2.

In fact, by (3.4), (3.5), and the definition ofu1, u2,

L(u2 − u1)(x) = f1(x, η2(x), η′′2(x))− f1(x, η1(x), η′′1(x)) ≥ 0,

(u2 − u1)(0) = (u2 − u1)(1) = 0,

(u2 − u1)
′′(0) = (u2 − u1)

′′(1) = 0.

With the use of Lemma 2.3, we get thatu1 ≤ u2. Similar to Step 1, we can easily prove
u′′1 + r(α− β) ≥ u′′2. Thus, (3.13) holds.

Step 3. The sequences{αn} and{βn} are obtained by recurrence:

α0 = α, β0 = β, αn = Tαn−1, βn = Tβn−1, n = 1, 2, . . . .

From the results of Step 1 and Step 2, we have that

(3.14) β = β0 ≤ β1 ≤ · · · ≤ βn ≤ · · · ≤ αn ≤ · · · ≤ α1 ≤ α0 = α,

(3.15) β′′ = β′′0 , α′′ = α′′0, α′′ − r(α− β) ≤ α′′n, β′′n ≤ β′′ + r(α− β).

Moreover, from the definition ofT (see (3.8)), we get

α(4)
n (x)− aα′′n(x) + bαn(x) = f1(x, αn−1(x), α′′n−1(x)),

i.e.,

α(4)
n (x) = f1(x, αn−1(x), α′′n−1(x)) + aα′′n(x)− bαn(x)

≤ f1(x, αn−1(x), α′′n−1(x)) + a[β′′ + r(α− β)](x)− bβ(x),(3.16)

(3.17) αn(0) = αn(1) = α′′n(0) = α′′n(1) = 0.

Analogously,

β(4)
n (x) = f1(x, βn−1(x), β′′n−1(x)) + aβ′′n(x)− bβn(x)

≤ f1(x, βn−1(x), β′′n−1(x)) + a[β′′ + r(α− β)](x)− bβ(x),(3.18)

(3.19) βn(0) = βn(1) = β′′n(0) = β′′n(1) = 0.

From (3.14), (3.15), (3.16), and the continuity off1, we have that there existsMα,β > 0
depending only onα andβ (but not onn or x) such that

(3.20) |α(4)
n (x)| ≤ Mα,β, for all x ∈ [0, 1].

Using the boundary condition (3.17), we get that for eachn ∈ N, there existsξn ∈ (0, 1)
such that

(3.21) α′′′n (ξn) = 0.

This together with (3.20) yields

(3.22) |α′′′n (x)| = |α′′′n (ξn) +

∫ x

ξn

α(4)
n (s)ds| ≤ Mα,β.
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By combining (3.15) and (3.17), we can similarly get that there isCα,β > 0 depending
only onα andβ (but not onn or x) such that

(3.23) |α′′n(x)| ≤ Cα,β, for all x ∈ [0, 1],

(3.24) |α′n(x)| ≤ Cα,β, for all x ∈ [0, 1].

Thus, from (3.14), (3.22), (3.23), and (3.24), we know that{αn} is bounded inC3[0, 1].
Similarly, {βn} is bounded inC3[0, 1].

Now, by using the fact that{αn} and{βn} are bounded inC3[0, 1], we can conclude that
{αn}, {βn} converge uniformly to the extremal solutions in[0, 1] of the problem (3.2) – (1.2).
Therefore,{αn}, {βn} converge uniformly to the extremal solutions in[0, 1] of the problem
(1.1) – (1.2), too. �

Example 3.1.Consider the boundary value problem

(3.25) u(4)(x) = −5u′′(x)− (u(x) + 1)2 + sin2 πx + 1,

(3.26) u(0) = u(1) = u′′(0) = u′′(1) = 0.

It is clear that the results of [3, 7, 13, 14] can’t apply to the example. On the other hand, it
is easy to check thatα = sin πx, β = 0 are upper and lower solutions of (3.25) – (3.26),
respectively. Lettinga = −5, b = 4, then all assumptions of Theorem 3.2 are fulfilled. Hence
the problem (3.25) – (3.26) has at least one solutionu, which satisfies0 ≤ u ≤ sin πx.
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