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ABSTRACT. In this paper, by combining a new maximum principle of fourth-order equations
with the theory of eigenline problems, we develop a monotone method in the presence of lower
and upper solutions for some fourth-order ordinary differential equation boundary value prob-
lem. Our results indicate there is a relation between the existence of solutions of nonlinear
fourth-order equation and the first eigenline of linear fourth-order equation.
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1. INTRODUCTION
This paper consider solutions of the fourth-order boundary value problem
(1.1) ul(z) = f(x,u(z),u"(x), 0<z<1,

(1.2) u(0) = u(1) = u"(0) =u"(1) = 0,

wheref : [0,1] x R x R — R is continuous.

Many authors|[1] —[8],[10], [[11],[[13] —[17] have studied this problem. [In[[1, 4,16, 8,
10,[16], Aftabizadeltet al. showed the existence of positive solution [to [(1.1] —|(1.2) under
some growth conditions of and a non-resonance condition involving a two-parameter linear
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eigenvalue problem. These results are based upon the Leray—Schauder continuation method
and topological degree. 10/[2,5,/7,/11, 15], Agarethl. considered an equation of the form

u(z) = f(z,u(x)),

with diverse kind of boundary conditions by using the lower and upper solution method.

Recently, Bail[3] and Mat al. [14] developed the monotone method for the problem] (1.1)
— (1.2) under some monotone conditionsfofMore recently, with using Krasnosel'skii fixed
point theorem, Li[[13] showed the existence results of positive solutions for the following prob-
lem

u® 4+ gu” —au = f(t,u), 0<t<1,
u(0) = u(1) = u"(0) = u"(1) =0,
wheref : [0,1] x RT™ — RT is continuousg, 3 € Randg < 272, o > —(3?/4,a/7t + 3/7% <
1.

In this paper, by the use of a new maximum principle of fourth-order equation and the theory
of the eigenline problem, we intend to further relax the monotone conditighasfd get the
iteration solution. Our results indicate there exists some relation between the existence of pos-
itive solutions of nonlinear fourth-order equation and the first eigenline of linear fourth-order
equation.

2. MAXIMUM PRINCIPLE

In this section, we prove a maximum principle for the operator

L:F — CI0,1]
defined byLu = u® — au” + bu. Herea, b € R satisfy
b
(2.1) %+—4+1>0, a>—4b>0, a>—271°%
m T
u € Fand

F={uecC*0,1] |u(0) =0, u(l) =0, v"(0) <0, u"(1) <0}.

Lemma 2.1. [12] Let f(x) be continuous for < z < b and letc < A\, = 72/(b — a)?. Letu
satisfies

u'(z) + cu(z) = f(z), forz € (a,b),
u(a) = u(b) = 0.

Assume that(z,) = u(xe) = 0 wherea < 27 < x5 < bandu(z) # 0forz; < o < x,. If
either f(z) > 0 for all z € [y, 23] or f(x) < 0forall x € [z1,x2] and f(z) is not identically
zero on[zy, xo), thenu(z) f(x) < 0forall x € [xq, 2.

Lemma 2.2. If u(x) satisfies
u' +cu(x) >0, forze (a,b)
u(a) <0, wu(b) <0,
wherec < \; = 72/(b — a)?. Thenu(z) < 0,in [a, b].
Proof. It follows by Lemmg 2.1L. O

Lemma 2.3.If u € F satisfiesLu > 0, thenu > 0in [0, 1].
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Proof. SetAxz = z”. Asa, b € R satisfy [2.1), we have that
Lu=u"® — au” + bu = (A — r5)(A — r)u > 0,

wherer;, = (a £ Va2 —4b)/2 > —7% Infact,r; = (a + Va? —4b)/2 > r = (a —
Va2 —4b)/2. By a/m?+b/7*+1 > 0, we haverr® +b+7t > 0, thusa®+4an®+4r* > a?—4b,
because? — 4b > 0, so

(a+271%)% > (Va2 — 4b)*.
Combining this together with > —272, we can conclude

a+ 27 > Va? — 4b.
Then,ry > ry = (a — Va2 — 4b)/2 > —7%.

Lety = (A —r)u =u" — ryu, then

(A—=r2)y =0,
i.e.,
y" —ryy > 0.
On the other hand; € F' yields that
(2.2) y(0) = u"(0) — ru(0) <0, y(1) = u"(1) = ryu(l) < 0.

Therefore, by the use of Lemrpa .2, there exists
y(x) <0, z€][0,1],

ie.,

u'(z) — ru(z) = y(z) <0.
This together with Lemmia 4.2 and the fact th@b) = 0, (1) = 0 implies thatu(z) > 0in
[0, 1]. O

Remark 2.4. Observe that, b € R satisfies[(2]1) if and only if

b
(2.3) b<0, —+—+1>0, a>-2r%
™ ™
or
(2.4) b>0, a>0, a®>—4b>0;
or
b
(2.5) b>0, 0>a>-2r% —+—=+1>0, a®—4b>0.
™ ™
From (2.3) and[(2]4), we can easily conclude
a++va?—4b
r = # Z 0.

Therefore, [(2.2) can be obtained una€®) > 0, «(1) >0, «”(0) <0, «”(1) <0, andF
can be defined as

F={ueC¥0,1] | u(0) >0, u(l) >0, «"(0) <0, «"(1) <0},

we refer the reader to[3, 13].
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Lemma 2.5. [7] Given(a,b) € R?, the following problem

(2.6) u® — au” + bu =0,
(2.7) u(0) = u(1l) = u"(0) =u"(1) =0,
has a non-trivial solution if and only if

a b

for somek € N.

3. THE MONOTONE METHOD

In this section, we develop the monotone method for the fourth order two-point boundary

value problem[(1]1) - (T} 2).
For givena,b € R satisfyinga/n? + b/7* +1 > 0, a*> —4b > 0, a > —272 and
f:0,1] xRxR— R,let

(3.1) fi(z,u,v) = f(z,u,v) + bu — av.
Then[1.1) is equal to
(3.2) Lu = fi(z,u,u").

Definition 3.1. Lettinga € C*[0, 1], we say thatv is an upper solution for the proble.l) -
(1.2) if o satisfies

(@) > f(z,a(z),a"(x)), forze(0,1),
04(0) =0, a(l)=0,
0, a"(1)<0.

Definition 3.2. Letting 3 € C*[0, 1], we say/3 is a lower solution for the problerp (1.1)[- (1L.2)
if § satisfies

IN

B9 (x) < f(x,B(x), 5" (), forz e (0,1),
B(0) =0, B(1)=0,
") >0, p"(1)>0.
Remark 3.1. If a, b satisfy [2.8) or[(2.4), the boundary values can be replaced by
a(0) >0, a(l) >0; £(0)<0, 5(1)<0

It is clear that ifa, 5 are upper and lower solutions of the problém|(1.1) —|(1.2) respectively,
a, ( are upper and lower solutions of the problé¢m|(3.2) 4(1.2) respectively, too.

Theorem 3.2. If there existo and 3, upper and lower solutions, respectively, for the problem
(1.7) — [T1.2) which satisfy

(3.3) B<a and p["+r(a—p)>dad",

andif f : [0,1] x R x R — R is continuous and satisfies

(3.4) [ ug,v) — f(z,u1,v) > —blug — up),

for f(z) < uy <wuy < a(x), veR,andx € [0,1];

(3.5) [z, u,v2) — f(z,u,v1) < alve — o),

forva+r(a—pF) > vy, o' —r(a—pF) < vy, va < f"+r(a—pF), v e R,andz € [0, 1], where
a,b € Rsatisfya/m? + b/7* +1 > 0, a®> —4b > 0, a > —2r* andr = (a — Va? — 4b) /2,
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then there exist two monotone sequenees} and {3, }, non-increasing and non-decreasing,
respectively, withvyg, = o and 5, = 3, which converge uniformly to the extremal solutions in

|3, a] of the problem[(1]1) -f (1] 2).

Proof. Consider the problem

(3.6) u®(z) — au’ (z) + bu(z) = fi(z,n(x),n"(x)), forz e (0,1),
(3.7) u(0) = u(1) = u"(0) =u"(1) =0,
with n € C?[0,1].

Sincea/n? + b/7* + 1 > 0, with the use of Lemmp 2.5 and Fredholm Alternative [9], the
problem (3.6) —{(3]7) has a unique solutienDefineT : C*[0, 1] — C*[0, 1] by

(3.8) Tn = u.
Now, we divide the proof into three steps.

Step 1. We show

(3.9) TC C C.

Here,C ={ne C?0,1] | 8<n<a, o' —rla—0)<n" <3 +r(a—p)}isa
nonempty bounded closed subse€if{0, 1].
In fact, for¢ € C, setw = T'(. By the definition ofa, 5 andC, combining [(3.11),

(3.4), and[(3.b), we have that
(a —w)P(2) — ala —w)"(z) + bla — w)(z)
> filz,a(z),a"(x) = fi(z, ((x), ¢"(z))
3.10) = f(=z a(x),a"(x)) = f(z,{(z),¢"(x)) — ala = ()" (z) + bla — ()(x) 2 0,

(3.11) (a —w)(0) =0, (a¢—w)(l)=0,

(3.12) (a—w)"(0) <0, (ax—w)'(1)<0.

With the use of Lemmia 2.3, we obtain that> w. Analogously, there holds > 5.
By the proof of Lemma 2|3, combining (3]10), (3.11), and (B.12), we have that

(a—w)'(z) —r(a—w)(x) <0, ze(0,1),

hence,
(x) +r(a—P)(z) > " () +r(a —w)(z) > o’ (x), forxe (0,1),
i.e.,
w'(z) > o (x) —r(a—B)(x), forze(0,1).
Analogously,
W'(z) < B"(z) +r(a—p)(x), forxe(0,1).
Thus, (3.9) holds.
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Step 2. Letuy = Ty, us = T, Whereny, n, € C satisfyn, < ny andn! + r(a — ) > 1.
We show

(3.13) up Sug,  uy Fr(a—B) = uj.
In fact, by [3.4),[(3.), and the definition af, u,,
L(uz = u1)(x) = fila, (), ny () — filz,m(x),ni(z)) = 0,
(uz = u1)(0) = (uz — u1)(1) =0,
(u2 — u1)"(0) = (uz — u1)"(1) = 0.

With the use of Lemmfa 2.3, we get that < u,. Similar to Step 1, we can easily prove

u] + r(a— F) > uy. Thus, (3.18) holds.
Step 3. The sequencefy,, } and{3, } are obtained by recurrence:

oy = &, ﬁ():ﬁa an:Ta/n—la Bn:Tﬁn—h n:1a2a""
From the results of Step 1 and Step 2, we have that
(3.14) B=0<h < <B < <a, << < =a,

(3.15) g'=05), o"=aqa5, " —r(a—p0)<al, B <F"+r(a-7p).
Moreover, from the definition of” (see[(3.B)), we get

ay (x) = aay)(2) + ban(r) = fi(w, an-i(2), oy (),

ie.,
a)(z) = fiz, ap-i(2), ap_y (@) + aay(z) — bay(x)
(3.16) < filw, ana(2), 05y (2)) + a8 + r(e = B)](z) — bB(x),
(3.17) @, (0) = an(1) = a(0) = all(1) = 0.
Analogously,
B0 (@) = fi, B (), By (2)) + aBy () = bBa ()
(3.18) < i@, Boa(x), By (2)) + al8” + r(a = B)](x) — bB(),
(3.19) B3(0) = Ba(1) = 5,(0) = B,(1) = 0.

From (3.14),[(3.15)[ (3.16), and the continuity fof we have that there exisid,, 5 > 0
depending only o and (but not onn or x) such that

(3.20) oW (z)| < M, 5, forallz e [0,1].
Using the boundary conditioh (317), we get that for eachN, there exists,, € (0,1)
such that
(3.21) a”(€,) = 0.
This together with[(3.20) yields
(3.22) @) = (&) + [ ald()ds| < M
&n
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By combining [3.1b) and (3.17), we can similarly get that ther€ s > 0 depending
only ona andg (but not onn or ) such that

(3.23) |l (x)| < Cap, forallze[0,1],

(3.24) |l (x)| < Cap, forall ze€0,1].
Thus, from|(3.14)[(3.32)] (3.23), ar{d (3/24), we know that} is bounded irC3[0, 1].
Similarly, {3,} is bounded inC3[0, 1].

Now, by using the fact thafa,, } and{3,} are bounded irC?[0, 1], we can conclude that
{a,},{6.} converge uniformly to the extremal solutionsin1] of the problem[(3.2) { (1]2).
Therefore,{«,}, {3,} converge uniformly to the extremal solutions|[ih 1] of the problem

(@.7) - [1.2), too. O
Example 3.1. Consider the boundary value problem

(3.25) uM(z) = —5u"(x) — (u(x) + 1)* + sin’ 7z + 1,

(3.26) u(0) = u(l) = u"(0) = u"(1) = 0.

It is clear that the results of [3]) 7, 13,114] can't apply to the example. On the other hand, it
is easy to check that = sinmz, [ = 0 are upper and lower solutions ¢f (3}25)[— (3.26),
respectively. Lettingg = —5, b = 4, then all assumptions of Theor¢m|3.2 are fulfilled. Hence
the problem|(3.25) 4 (3.26) has at least one solutiowhich satisfie$) < u < sin7z.
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