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ABSTRACT. Here in this paper, we establish sharp bounds on the expectatidi$ cfcord
increments from general and non-negative parent distributions. We also determine the probabil-
ity distributions for which the bounds are attained. The bounds are numerically evaluated and
compared with other rough bounds.
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1. INTRODUCTION

Consider independent identically (iid) distributed random varialdles .., X,,, ..., with a
continuous common distribution function (cdf). We assume the parent cdf has finite mean
uo= fol F~!(x)dz and finite variancer? = fOI(F—l(m) — w)?dx. The j'* order statistic
Xjm, 1 < j < n,is the j'* smallest value in the finite sequenag, X5, ..., X,. An ob-
servation.X; will be called an upper record statistic if its value exceeds that of all previous
observations. That isX; is a record ifX; > X, for every: < j. The indices at which the

records occur are called record times. The record tifjea > 0 can be defined as follows:
T =1,
and
T,=min{j:j>T,1: X;>Xgp, ,}, n>1
Then the sequence of record statistiés, } is defined by
R,=Xp.1,,n=0,1,2,...
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2 MOHAMMAD Z. RAQAB

By definition R, is a record statistic (trivial record).

Like extreme order statistics, record statistics are applied in estimating strength of materials,
predicting natural disasters, sport achievements etc. Record statistics are closely connected with
the occurrence times of some corresponding non-homogeneous Poisson processes often used in
shock models (cf. Gupta and Kirmani, 1988). Record statistics are also used in reliability theory.
Serious difficulties for the statistical inference based on records arise due to the fa&€t that
+o00, n = 1,2,..., and the occurrences of records are very rare in practice. These problems
are removed once we consider the modet'éfrecord statistics proposed by Dziubdziela and
Kopocihski (1976).

For a positive integet, let7; , = k and

Tn,k = min{j 1J > Tn—Lk’v Xj > XTn—l,k_k+1:Tn—l,k}7 n > 1.

ThenR, ) = X7, ,—kt1:1,,, andT, x, n > 0, are the sequences Bf* record statistics ank”

record times, respectively. Obviously, we obtain ordinary record statistics in the case of

1. In reliability theory, then value ofk*" record statistics is just the failure time oka-out-

of-T,, ,, system. For more details about record statistics, and their distributional properties, one
may refer to Ahsanullah (1995), Arnold et al. (1998) and Ahsanullah and Nevzorov (2001).

Several researchers have discussed the subject of moment bounds of order statistics. Moriguti
(1953) suggested sharp bounds for the expectations of single order statistics based on a mono-
tone approximation of respective density functions of standard uniform samples by means of the
derivatives of the greatest convex minorants of their antiderivatives. Simple analytic formulae
for the sample maxima were given in Gumbel (1954), and Hartley and David (1954). Arnold
(1985) presented more general sharp bounds for the maximum and arbitrary combination of or-
der statistics, respectively, of possibly dependent samples in terms of central absolute moments
of various orders based on the Hélder inequality. Papadatos (1997) established exact bounds
for the expectations of order statistics from non-negative populations.

In the context of record statistics, Nagaraja (1978) presented analytic formulae for the sharp
bounds of the ordinary records, based on application of the Schwarz inequality. By the same ap-
proach, Grudzie and Szynal (1985) obtained nonsharp boundgforecord statistics. Ragab
(1997) improved the results using a greatest convex minorant approach. Ragab (2000) evaluated
bounds on expectations of ordinary record statistics based on the Holder inequality. Gajek and
Okolewski (1997) applied the Steffensen inequality to derive different bounds on expectations
of order and record statistics.

Recently, Ragab and Rychlik (2002) presented sharp bounds for the expectatibfis of
record statistics in various scale units for a general distribution.

Generally, forl < m < n, we have

1
1.2) E(Rnip — Rmy) = / [F_l(x) — )P () d, 1<m<n,
0

where
hm,n,k(x) = fn,k<x> - fm,k(x)a 0 <z < 17

and
n+1

for(x) = knl [—In(1 — 2)]"(1 — )k, k>1 n>0,

is the density function of the'” value of thek!” records of the iid standard uniform sequence
(cf., e.g., Arnold et al., 1998, p. 81). For simplification, we change the variables and obtain
another representation ¢f (1L.1),

(12) E(Ryp — Rung) = / F1(1 = e ) gpni(y)e vy,
0
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where

Cmnk(Y) = Ik (V) — gmi(y),

and
kn+1

Gni(Y) = o yre~ vy S,

is a density function with respect to the exponential measure on the positive half-axis. The
respective antiderivative is

Pk (Y) = Gui(y) — Grui(y) = IG,(n + 1, k) — IG,(m + 1, k),

wherel/ G, (a, b) stands for the incomplete gamma function. This antiderivative can be rewritten
in the following form:

_ —k - (k?J)j
(13) q)m,n,k(y) =—e Z T
j=m+1

Applying the Cauchy-Schwarz inequality o ([L.2), we obtain a classical nonsharp bound of
E(Rn,k - Rm,k)
E(Rn,k - Rm,k) S Bm,7z,k(1>aa

where

Eo\2ZmHL o E o\ /on
(1.4) Bm,n,k(l):{k (Qk—l) (m>+k(2k—1) (n)
k m+n+1 m-+n %
_2k<2k—1> ( m )}

In Sectio@ of this paper, we establish sharp bounds for the expectatibfisretord incre-
ments expressed in terms of scale unit$n Sectiorj B, we establish bounds for the moments of
k' record increments for non-negative parent populations. Computations and comparisons be-
tween the classical bounds and the ones derived in Seftiong 2 and 3 are presented and discussed
in Sectior 4.

2. BOUNDS ON EXPECTATIONS OF k' RECORD INCREMENTS

In this section we present projection moment bounds on the expectatiéfisretord incre-
ments in terms of scale units. First we recall Moriguti's (1953) approach that will be used in
this section. Suppose that a functibhas a finite integral ofu, b]. Let H (z) = [ h(t)dt, a <
x < b, stand for its antiderivative, anH be the greatest convex minorant &t Further, let
h be a nondecreasing version of the derivative (e.g. right continuoul). d®bviously, is
a nondecreasing function and constant in the interval whegeh. For every nondecreasing
functionw on [a, b] for which both the integrals ity (2.1) are finite, we have

b b
(2.1) /w(:v)h(m)dmg/ w(z)h(z)dr.

The equality in[(Z11) holds iffy is constant in every interval contained in the set, whérg H.
Analyzing the variability ofh,, . (z) is necessary for evaluations of optimal bounds. We

consider first the problem witm = n — 1 (n > 2) andk > 1. For simplicity, we use

P (), (), @and B, (4); i = 1,2, 3 instead ofh,_1 (), Pn—1k(z), @NdB,_1 5, 1 (7);

i=1,2,3.
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Functionh,, (x) can be represented as

k
hog(z) = — fo1 k() {— In(l —z) + 11 , n>2.
n
It starts from the origin and vanishes asapproached passing the horizontal axis at =
1 —e™* (n>2, k> 1). By using the facts that

Fuk() = S (1 = ) as() and

Foae) = St (k= D)1 = )] (1= 2) 7 fo (),

we conclude that

(2.2) hy(z) = _ann—Q,k(x (1—a)™

x{ [—1n(1—x)]2+(2k—1)ln(1—x)+(n—1)}.
n

It follows from (2.2) thath,, ,(x) decreases ofD, a, k), (bnk, 1) @and increases ofu,, i, b, k).

wherea,,;, =1 — e %k, b, = 1 — e~k with

A (2k — 1)n — \/(Zk; —1)2n+n(n—1)
nk — ( ) )
)

(2k—1)n++/(2k—1)2n+n(n—1)
2k(k—1) '
We can easily check that, ;. (a, ) < 0 andh,, x (b, ) > 0.

The antiderivativefd,, . (z) of h, (), needed for the Moriguti projection, is therefore con-
cave decreasing, convex decreasing, convex increasing and concave incredsing, in
[an g, 1T — e k] [1 — e ™* b, 4], [bai, 1], respectively. Further, it is negative wiffh, (0) =
H,,(1) = 0. Thus its greatest convex minoraft, , is linear in[0,1 — ¢~”], and[1 —

e~"/(+=1) 1] for somes € [c,, 1, n/k]. Thatis,

hoi(1 —e Pz, if 2<1—eb,

dn,k -

H,i(x) =< H,(z), if 1—ef<a<l—e kD)

—hpp(1—e™E=DY (1 —2), if 1—e kD <3<,

where( is determined numerically by the equation

(2.3) Pk (y) = enp(y)(1 —e?).
Note thaty = n/(k — 1) is obtained by solving the equation
(2.4) Cuk(y) = —nrlyle™.

The projection ofp,, () onto the convex cone of nondecreasing functions’ifi0, o), e dy)
(cf. Rychlik, 2001, pp. 14-16) is

eni(B), iy <,
(25) @n,k(y) = Qpn,k(y% if ﬁ <y< %7

J. Inequal. Pure and Appl. Mathb(4) Art. 104, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

BOUNDS ON THEEXPECTATIONS OFk!" RECORDINCREMENTS 5

By (1.2), (2.5), and the Cauchy-Schwarz inequality, we get
B(Rus— Rocss) = [ P70 €) = pllonaly) = cle
0

< / TE = o) — dl[Bas(y) — e Vdy

(2.6) < { / Oo[wn,kw)—c]?e—ydy} o

for arbitrary reak. The former inequality becomes equalityfif ' (1 — e~¥) — p is constant on
(0,3) and(n/(k — 1),00). The latter one is attained if

(2.7) Fll—e) —p=al@,,.(y) —clsen(@,,(y) —¢), a>0.

The condition in[(2.]7) implies the former condition. As a consequence of that, the bound in
(2.8) is attained for arbitrary by the distribution function satisfying (2.7). Now we minimize
the bound in the RHS of (2.6) with respectde- ¢, (1), n € (8,n/(k —1)). We have

(2.8) /O T @rly) — onam)PeVdy

n

= [pnk(n) — enp(@)P(1—e™7) + /[ﬁ [Pnge(1) — Pn(y)) e Ydy

n/(k-1)
[ nsls) — ur Py + [/ (6 = 1) = (e,

Differentiation of the RHS of[(Z2]8) and equating the resuld teads toy,, ,(n) = 0. This
shows that the unique solution ¢f (R.8)jis= n* = n/k. It follows that the optimal bound on
E(R, 1, — R,—1x) is given by

@9) B = { [P
0
Summing up,[(2]9) witH (2]3) anf (2.4) leads to the following bound

_ n __n_
(2.10) B,x(2) = {Sﬁi,k(ﬁ)(l —e )+ ¢h, (m) e+t
k2n+2 om 1
T ok (n ) g (2"“’%— 1)
k2 2n — 2 1
Tk (n—1)5(2”_1’2k—1>

K2t fop— 1 1 :
BRI (n—1>6<2n’2k,‘—1)} ’

wherei(i, j) = I1Gn x-1)(1,J) — 1G3(i, j), andg is the unique solution to

(2.11) (k—1y—nleV=ky—n, n>2 k>1.
From (2.7), the optimal bound is attained iff

(2.12) Fll—e) —p=alg,,.(y)|sen(@,x(y))
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Note that the right-hand side ¢f (2]12) is non-decreasing, negative, aik) and positive on
(n/k,o0). Moreover, this is constant oft), 3) and (n/(k — 1), c0), which is necessary and
sufficient for the equality in the former inequality f (2.6). The condition

/ [F7H1 —eY) — plPe Ydy = o
0

forcesa = o/B, x(2). Consequently, the distributions functions of the location-scale family
for which the bounds are attained have the form

0, if x < glv
(2.13) Pla) = Il s (Bur(258), i & <z <&,
1, If x 2 527
where
&= 1= = onr(B)
1 M Bn7k(2) Spn,k Y
and

o n
S=p+ Bn7k(2)90n7k (k: — 1) .

The distribution function in[(2.13) is involving the inverse of smooth component ,, »
with two atoms of measurds— e~* ande—"/(*~1)| respectively, at the ends of support.

Remark 2.1. In the special case of ordinary records & n — 1,k = 1), Eq. [2.11) reduces to
n(l1—e~¥) = y and the optimal bound coincides with the corresponding bound in Rychlik (2001,
pp.141). The optimal bound for the extreme case- 1 cannot be obtained from the above
bound. Further, the case= k = 1, leads to the estimates fé&f( R, — Ro1) = E(Ri1 — )
which were already presented in Ragab and Rychlik (2002).

Now we consider the case = 1 andk > 1. In this case, the projection df, ,(x)
onto the family of nondecreasing functions in the Hilbert spaégo, 1], dz) is hyx(z) =
hy g (min{z, 1 — e~ V/k-11),

From (2.1), we get

E(Ri— X14) < / [FY(1 = e7) — 1] B p(y)edy
0
S Bl,k(2)a7

ke ® _ 1 k? 9
Bl,k(Q) = {(k‘ — 1)26 k-1 4 m(2k — 2k+ 1)

1
2k—1

ke 71 4 3 2 :
_(zk—1)3(k—1)2(6k — 4k +k*—2k+1), .

Using similar arguments to those in the previous proof, we conclude that the Byna) is
attained for the distribution function of the location-scale family

O, if x < o — mk,
— xr— H o g 6_1
(214) F(gj) = h07%7k(Bl,k<2>Tu)7 |f m— mk <x < 12 + B1x(2) : %7
R el ke~ !
1, if z>p+ Bia® k-1
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BOUNDS ON THEEXPECTATIONS OFk!" RECORDINCREMENTS 7

The distribution function in(2.14) has a jump of height/*~1 at the right end of support.
In the case of ordinary records = 1), one can establish optimal moment bounds for general
k' record increment®,, ; — R,,.1, 1 < m < n. The functionp,, ,(y) = gn1(y) — gma(y) can

be rewritten as

m! n—m
(pm,n(y) = gm,1<y) [Fy — 1:| s 1<m<n.

We can easily note that functian,, ,(z) = ¢m.(—In(l — z)) starts from the origin, de-
creases t@,, ,(1 — e™) < 0, wherev = [(n — 1)!/(m — 1)!]"/(*=™) and then increases to
oo at 1 passing the horizontal axis at— =", wherev* = [n!/m!]}/("=™), The antideriva-
tive H,, ,(z) needed in making the projection, is then concave decreasing, convex decreasing,
and convex increasing 0,1 — e, [1 —e™,1 — ], and[1 — e, 1], respectively, with
H,,,(0) = H,,,(1) = 0. The corresponding greatest convex minor&it,, () is linear in
0, 3] for somes* € [1 — e, 1 — e ], that is determined numerically by the following
equation

(2.15) P (Y) = Pmn(y)(1 —e7).
By (1.3), Eq. [(2.1p) can be simplified as
LY (v -
(2.16) eyzﬁ:(ﬁ_ﬁ>(1—ey)'
j=m+1

Finally the projection ofp,, ,,(y) in L([0, c0), e Ydy) is

Prnn(y) = Omn (max{*, y}).
Hence
(217) B — Bnie) /0 Bnly) — Pe vy,

g

wherec = (n),n € (8*,00). The constanty = n* = ¢~(1) minimizes the RHS of (2:17),
and then the optimal bound simplifies to

2n gy
(2.18) Bun(2) = ¢} ()1 —e ) =14+ [(2”’) ﬁ~|
’ n )<~~~ j
7=0
2m  oyj +N oy %
+(2m) 3 _Q(m—i—n)zﬁ
m iz m )=
The bound is attained by
(2.19) F(z) =, ! an(z)x—,u : u—ang<oo.
o ’ o Bn(2)

The distribution[(2.19) has a jump of heighitand a density with infinite support to the right
of the jump point.

3. BOUNDS FOR NON-NEGATIVE DISTRIBUTIONS

In this section, we develop bounds for the moments:'6frecord increments from non-
negative parent distributions. The bounds are expressed in terms of location units rather than
scale units. The expectation bf* record increments can be represented as

(3.1) E(Roy — Fos) — / T (Cmi(S(@)) — Cun(S())Ndy.
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whereS(y) = —in(1 — F(y)), 0 < y < oo is the hazard function.
In order to get optimal evaluations for the expectation in|(3.1), we should analyze variablility
of the following function:

W(y) =

Forn = m+1, itis clear to note that the functidi’ (y) is unimodal with modey = 2=, With
n > m + 1, a simple analysis leads to the conclusion that

n

W) = > ¢),

j=m+1

G (y) — Gui(y)

e Y

, 0<y<oo.

where (e
ky)le
q;(y) = f-

FunctionW’'(y) > 0if y < 2 andWW'(y) < 0if y > 2. By the continuity ofiV(y), there

exists a root ofV'(y), sayy € [+, 2<]. The derlvatlve oWV (y) can be written as

"G (V) = g ()) + (Grp(y) — Gn,k‘(y)).

e Y

W (y) = -

SinceG, 1 (y) = gni(y)e™, we have

YW ()] = 7 (I = (k= Dylgmi(y) — [ — (k — Dylgns()}

We observe that the functida=#W’(y)] < 0 fory € [, 7% ]. This leads to the conclusion

that[e=vW'(y)] is strictly decreasing and then the roo€ |2+, -] must be unique. Conse-
quently,IW(y) is unimodal function with mode. The value ofy can be evaluated numerically
from the equation

(3.2) Gmk(y) = Grr(y) = (Gnk(Y) — Gmi(y)) e,

Form =n —1,~v =n/(k — 1), which is the unique solution td (2.4).
From the non-negativity assumption, we have

E(Rus — R / W(S(y))(1 - F(y))dy

(3.3) (I (V) = G (7)) 105
which leads to

(3.4) Bpnk(3) =

km—i—l e—(kz—l)'y |:m!kn—m

m) ,yn—m - 1:| Hs

n!
where~ is the unique solution to

n

Ky kmtt o TEvmmlo
(3.5) > o= y{ y —1]

! | |
Pl m! n!

Note that Eq. [(3]5) is a reduction df (8.2). The bound](3.3) is attained in the limit by a
two-point marginal distribution supported@and.e” with respective probabilities— ¢~ and
ef'y

For the special case = n — 1, 7 = ", n > 2 and the bound3,, ,, (3) can be simplified

as f n( 1) .
n—1)""

By i(3) = mon>2 k> 1

Lak(3) (k—l) -1 © " ”
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A useful approximation fon! wheren is large, is given by Stirling’s formula! = /27mnn™e=".
This leads to a simpler formula

k " e !
B, 1,603 = . .
ok(3) (,H) —

4. COMPUTATIONS AND DISCUSSION

In this section we carry out a numerical study in order to compute the sharp bounds on the
expectations of the!” values of thek record increments for selected valuesmef » and
k. The first step of our calculations is to determine the parameiess and~ by solving
equations[(2]3)[ (2.15) and (B.2) whose left-hand side can be simplified and rewritten in terms
of a Poisson sum of probabilities. Consequently, we numerically solve the equivalent equations
(2.11), (2.16) and (3]5), respectively, by means of the Newton-Raphson method. Then using
(2:10), [2:18), and (3]4), we evaluate the sharp bounds2), B,,.(2) (k = 1) and B, x(3)

for some selected values of, n andk.

In Table, each optimal boun, ;(2) is compared with the rough ong, ;(1) and the
one for non-negative pareft, . (3). Clearly, the rough bound results in a significant loss of ac-
curacy in evaluating the" record increments. We observe that the bouBigs(2) and B, (3)
decrease akincreases with fixea which has the following explanation. If we consideand
o as general location and scale parameters and inciease restrict ourselves to narrower
classes of distributions and the bounds in the narrower classes become tighter. Moreover, the
relative discrepancy betwed?), ,(2) andB,, ;(3) increases with the increase of paramétein
fact, one can also argue that the boutis; (1) strictly majorizeB,, ;(2) for n > 1 andk > 1.
For this, the discrepancy betwe#h ;. (1) andB,, x(3) is much larger than that betweét) ,(2)
andB,, x(3). Forn > k, other calculations show thét, .(1) andB,, ;(2) beatB,, ;(3).

Table compares the rough boun@s (1) with B,,,(2) for the moments of ordinary
record incrementsk(= 1;1 < m < n). The numerical results show that the application
of the Holder inequality combined with the Moriguti modification results in improvements in
evaluating the moments bounds for record increménts (|, 1 < m < n). We have excluded
B,,,.»(3) since it cannot be obtained for the ordinary records increments. Obviously, the bounds
for non-negative distributions are expressed in terms of location units and these bounds beat the
one derived based on combining the Moriguti approach with the Cauchy-Schwarz inequality
when the coefficient of variation/u exceeds the ratid,, (3)/ B, x(2) depending om > 1
andk > 1.

The aim of this paper was the development of the optimal moment bounds ot thecord
increments from both general and non-negative parent distributions. The results can be used
effectively in estimating the expected values of records as well as in characterizing the proba-
bility distributions for which the bounds are attained. Possibly, one open problem is to find the
sharp bounds in some restricted families of distributions, e.g. ones with symmetric distributions
or with monotone failure rate.
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Table 4.1: Bounds on the expectationg:8f records increments in various location or scale units.

H n ‘ k ‘ ﬁ ‘ Bn,k(l) ‘ Bn,kz(z) ‘ Bn,k(?’) ‘
2 3| 0.3948| 0.6024 0.5681 0.6090
4 | 0.2838| 0.6293 0.5803 0.4812
5| 0.2213| 0.6667 0.6053 0.4229
6 | 0.1813] 0.7063 0.6341 0.3898
3 4 1 0.5639| 0.5182 0.4636 0.5311
5| 0.4409| 0.5300 0.4633 0.4376
6 | 0.3617| 0.5492 0.4720 0.3871
7| 0.3065| 0.5712 0.4846 0.3558
4 6 | 0.5410| 0.4774 0.3994 0.4051
7 | 0.4588| 0.4891 0.4023 0.3619
8 | 0.3982| 0.5031 0.4084 0.3333
9] 0.3517| 0.5183 0.4162 0.3129
5 7 | 0.6106| 0.4432 0.3573 0.3793
8 | 0.5302| 0.4509 0.3576 0.3421
9| 0.4684| 0.4607 0.3606 0.3162
10 | 0.4195| 0.4715 0.3651 0.2972
6 8 | 0.6618| 0.4183 0.3266 0.3579
9 | 0.5849| 0.4238 0.3259 0.3256
10 | 0.5239| 0.4310 0.3271 0.3022
11| 0.4744| 0.4391 0.3298 0.2846
10 | 14 | 0.6640| 0.3646 0.2524 0.2625
15| 0.6185| 0.3680 0.2524 0.2494
16 | 0.5789| 0.3719 0.2528 0.2386
17 | 0.5440| 0.3761 0.2537 0.2294

Table 4.2: Bounds on the expectations of ordinary records incremkntsl( 1 < m < n) in various scale units.

H m ‘ n ‘ B* ‘ Bm,n(l) ‘ Bm,n(2) ‘
1 2| 1.59362| 1.4142 0.9905
3| 2.1270 3.7417 3.5943
4| 2.6188 7.8740 7.7991

5] 3.0855 | 15.5563 | 15.5150
2 3| 2.8214 2.4495 2.2254
4 | 3.3308 6.7823 6.6925

5| 3.8117 | 14.6969 | 14.6462

6 | 4.2740 | 29.5635 | 29.5321
3 4 | 3.9207 4.4721 4.3485
5| 44149 | 12.6491 | 12.5929

6 | 4.8898 | 27.8568 | 27.8204

7| 5.3511 | 56.6745 | 56.6489
4 5| 4.9651 8.3666 8.2966
6 | 5.4526 | 23.9583 | 23.9208

7 | 59261 | 53.3104 | 53.2820

8 | 6.3890 | 109.3160| 109.2930

5 6 | 5.9849 | 15.8745 | 15.8333
7 | 6.4703 | 45.8258 | 45.7984

8 | 6.9447 | 102.7030| 102.6790

9| 7.4103 | 211.8210] 211.7990

REFERENCES

[1] M. AHSANULLAH AND V.B. NEVZOROV,Ordered Random Variableblova Science Publishers
Inc., New York, (2001).

[2] B.C. ARNOLD, p-norm bounds on the expectation of the maximum of a possibly dependent sam-
ple,J. Multivariate Analysis17(1985), 316-332.

J. Inequal. Pure and Appl. Mathb(4) Art. 104, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

BOUNDS ON THEEXPECTATIONS OFk'® RECORDINCREMENTS 11

[3] B.C. ARNOLD, N. BALAKRISHNAN AND H.N. NAGARAJA, Records John Wiley, New York,
(1998).

[4] W. DZIUBDZIELA AND B. KOPOCNSKI, Limiting properties of thek-th record valuesAppl.
Math. (Warsaw) 15 (1976), 187—-190.

[5] L. GAJEK AND A. OKOLEWSKI, Steffensen-type inequalities for order statistics and record sta-
tistics,Annales Univ. Mariae Curie-Sklodowska Lublin-Polgrval. LI.1, 6 (1997), 41-59.

[6] Z. GRUDZIEN AND D. SZYNAL, On the expected values &fth record values and associated
characterizations of distributions, in: F. Konecny, J. Mogyorédy, and W. Wertz, (€dsbability
and Statistical Decision Theoryol. A, Reidel, Dordrecht, (1985), 119-127.

[7] E.J. GUMBEL, The maxima of the mean largest value and raAge, Math. Statist.25 (1954),
76-84.

[8] R.C. GUPTAAND S.N.U.A. KIRMANI, Closure and monotonicity properties of nonhomogeneous
Poisson processes and record valtesbab. Eng. Inform. Sci2 (1988), 475—-484.

[9] H.O. HARTLEY AND H.A. DAVID, Universal bounds for mean range and extreme observation,
Ann. Math. Statist25 (1954), 85-99.

[10] S. MORIGUTI, A modification of Schwarz’s inequality with applications to distributiofan.
Math. Statist.24 (1953), 107-113.

[11] H.N. NAGARAJA, On the expected values of record valugsstral. J. Statist.20 (1978), 176—
182.

[12] N. PAPADATOS, Exact bounds for the expectations of order statistics from non-negative popula-
tions,Ann. Inst. Statist. Math49 (1997), 727-736.

[13] M.Z. RAQAB, Bounds based on greatest convex minorants for moments of record \Giaest,
Probab. Lett. 36 (1997), 35-41.

[14] M.Z. RAQAB, On the moments of record valugSpmmun. Statist. — Theory Metl29 (2000),
1631-1647.

[15] M.Z. RAQAB AND T. RYCHLIK, Sharp bounds for the moments of record statisti@smmun.
Statist. — Theory Meth31(11) (2002), 1927-1938.

[16] T. RYCHLIK, Projecting statistical functionalgectures Notes in Statistict60(2001), Springer-
Verlag, New York.

J. Inequal. Pure and Appl. Mathb(4) Art. 104, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Bounds On Expectations Of kth Record Increments
	3. Bounds For Non-Negative Distributions
	4. Computations and Discussion
	References

