

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 4, Article 120, 2005

MULTIVARIATE VERSION OF A JENSEN-TYPE INEQUALITY

ROBERT A. AGNEW

DEERFIELD, IL 60015-3007, USA raagnew@aol.com

URL: http://members.aol.com/raagnew

Received 12 May, 2005; accepted 22 September, 2005 Communicated by C.E.M. Pearce

ABSTRACT. A univariate Jensen-type inequality is generalized to a multivariate setting.

Key words and phrases: Convex functions, Tchebycheff methods, Jensen's inequality.

2000 Mathematics Subject Classification. Primary 26D15.

1. Introduction

The following theorem was proved in [1], using Tchebycheff methods [4], [5], to extend a result obtained in [2] for the Laplace transform. It was later reproved in [3], [6], [7] using Jensen's inequality.

Theorem 1.1. Let X be a nonnegative random variable with $E(X) = \mu > 0$ and $E(X^2) = \lambda < \infty$. Suppose that $f: [0, \infty) \to \mathbb{R}$ with f(0) = 0 and g(x) = f(x)/x convex on $(0, \infty)$. Then, $E(f(X)) \ge \mu g(\lambda/\mu) = (\mu^2/\lambda) f(\lambda/\mu)$ and the bound is sharp.

We next provide a natural multivariate generalization of Theorem 1.1, using the same approach as [1], followed by examples to illustrate its application.

2. MAIN RESULT

Let $S=(0,\infty)^n$ and let $g_1,...,g_n$ be real-valued functions on S. For any column vector $x=(x_1,\ldots,x_n)^T\in S$, let $f(x)=\sum_{i=1}^n x_ig_i(x)$ and let e_i denote the i^{th} unit column vector in \mathbb{R}^n .

Theorem 2.1. Let $g_1, ..., g_n$ be convex on S, and let $X = (X_1, ..., X_n)^T$ be a random column vector in S with $E(X) = \mu = (\mu_1, ..., \mu_n)^T$ and $E(XX^T) = \Sigma + \mu\mu^T$ for covariance matrix Σ . Then,

(2.1)
$$E\left(f\left(X\right)\right) \ge \sum_{i=1}^{n} \mu_{i} g_{i} \left(\frac{\sum e_{i}}{\mu_{i}} + \mu\right)$$

ISSN (electronic): 1443-5756

© 2005 Victoria University. All rights reserved.

and the bound is sharp.

Proof. By convexity, for any $\xi_i \in S$, there exists a $b_i(\xi_i) \in \mathbb{R}^n$ such that

(2.2)
$$g_i(x) \ge g_i(\xi_i) + b_i(\xi_i)^T (x - \xi_i)$$

for all $x \in S$, i.e., there exists a supporting hyperplane at ξ_i . Hence,

(2.3)
$$E(f(X)) = \sum_{i=1}^{n} E(X_{i}g_{i}(X))$$

$$\geq \sum_{i=1}^{n} E\left(X_{i}\left(g_{i}(\xi_{i}) + b_{i}(\xi_{i})^{T}(X - \xi_{i})\right)\right)$$

$$\geq \sum_{i=1}^{n} \mu_{i}\left(g_{i}(\xi_{i}) + b_{i}(\xi_{i})^{T}\left(E\left(\frac{XX_{i}}{\mu_{i}}\right) - \xi_{i}\right)\right)$$

But

$$E(XX_i) = E(XX^T e_i) = E(XX^T) e_i = \Sigma e_i + \mu \mu_i.$$

Then, (2.2) and (2.3) together imply that

$$\xi_i = E\left(\frac{XX_i}{\mu_i}\right) = \frac{\sum e_i}{\mu_i} + \mu$$

yields the maximum bound which is obviously attained when X is concentrated at μ .

Theorem 2.1 is a true multivariate extension as the following examples illustrate. As indicated in [2] for the Laplace transform, certain extensions are only nominally multivariate and fall within the domain of Theorem 1.1 because the random variables are combined in a univariate linear combination.

3. EXAMPLES

Example 3.1. Let $g_i(x) = \alpha_i + \beta_i^T x$ be linear with $\alpha_i \in \mathbb{R}$ and $\beta_i \in \mathbb{R}^n$. Then

$$f(x) = \sum_{i=1}^{n} x_i g_i(x) = \sum_{i=1}^{n} x_i (\alpha_i + \beta_i^T x)$$

is a general quadratic function which can also be written as $f(x) = \alpha^T x + x^T B x$ where $\alpha = (\alpha_1, \dots, \alpha_n)^T$ and $B = [\beta_1, \dots, \beta_n]^T$. Then we have

$$E(f(X)) = E\left(\sum_{i=1}^{n} X_i \left(\alpha_i + \beta_i^T X\right)\right)$$

$$= \sum_{i=1}^{n} \left(\alpha_i \mu_i + \beta_i^T \left(\sum e_i + \mu \mu_i\right)\right)$$

$$= \sum_{i=1}^{n} \mu_i \left(\alpha_i + \beta_i^T \left(\frac{\sum e_i}{\mu_i} + \mu\right)\right)$$

$$= \alpha^T \mu + \mu^T B \mu + tr(B \Sigma)$$

so the Theorem 2.1 bound is, not surprisingly, exact in this general quadratic case.

Example 3.2. Let $g_i(x) = \rho_i \prod_{j=1}^n x_j^{-\gamma_{ij}}$ with $\rho_i > 0$ and $\gamma_{ij} > 0$. Here, the g_i might represent Cournot-type price functions (inverse demand functions) for quasi-substitutable products where x_i is the supply of product i and $g_i(x_1,\ldots,x_n)$ is the equilibrium price of product i, given its supply and the supplies of its alternates. Then, $x_i g_i(x)$ represents the revenue from product i and $f(x) = \sum_{i=1}^n x_i g_i(x)$ represents total market revenue for the ensemble of products. In this context, we would normally expect $\gamma_{ij} \in (0,1)$ for viable products. Then, with probabilistic supplies, we have

$$E\left(f\left(X\right)\right) \ge \sum_{i=1}^{n} \mu_{i} g_{i} \left(\frac{\sum e_{i}}{\mu_{i}} + \mu\right) = \sum_{i=1}^{n} \mu_{i} \rho_{i} \prod_{j=1}^{n} \left(\frac{\sigma_{ij}}{\mu_{i}} + \mu_{j}\right)^{-\gamma_{ij}}$$

where σ_{ij} is the ij^{th} element of Σ . This example demonstrates that Theorem 2.1 has an interesting application in economic oligopoly theory.

In Example 3.2, $g_i(x) = e^{h_i(x)}$ where

$$h_i(x) = \ln \rho_i - \sum_{j=1}^n \gamma_{ij} \ln x_j$$

is convex on S. In general, if $k: \mathbb{R} \to \mathbb{R}$ is convex nondecreasing and $h: S \to \mathbb{R}$ is convex, then g(x) = k(h(x)) is convex on S since

$$k\left(h\left(\lambda x^{(1)} + (1-\lambda) x^{(2)}\right)\right) \le k\left(\lambda h\left(x^{(1)}\right) + (1-\lambda) h\left(x^{(2)}\right)\right)$$

$$\le \lambda k\left(h\left(x^{(1)}\right)\right) + (1-\lambda) k\left(h\left(x^{(2)}\right)\right)$$

for any $x^{(1)}$, $x^{(2)} \in S$ and $\lambda \in [0, 1]$. Other examples satisfying Theorem 2.1 can be generated by composing the linear functions of Example 3.1 with convex nondecreasing functions like $k(u) = e^u$, $k(u) = u + \sqrt{u^2 + 1} = e^{\sinh^{-1} u}$, or $k(u) = \max(0, u)$.

REFERENCES

- [1] R.A. AGNEW, Inequalities with application in economic risk analysis, *J. Appl. Prob.*, **9** (1972), 441–444.
- [2] D. BROOK, Bounds for moment generating functions and for extinction probabilities, *J. Appl. Prob.*, **3** (1966), 171–178.
- [3] B. GULJAŠ, C.E.M. PEARCE AND J. PEČARIĆ, Jensen's inequality for distributions possessing higher moments, with applications to sharp bounds for Laplace-Stieltjes transforms, *J. Austral. Math. Soc. Ser. B*, **40** (1998), 80–85.
- [4] S. KARLIN AND W.J. STUDDEN, *Tchebycheff Systems: with Applications in Analysis and Statistics*, Wiley Interscience, 1966.
- [5] J.F.C. KINGMAN, On inequalities of the Tchebychev type, *Proc. Camb. Phil. Soc.*, **59** (1963), 135–146.
- [6] C.E.M. PEARCE AND J.E. PEČARIĆ, An integral inequality for convex functions, with application to teletraffic congestion problems, *Math. of Opns. Res.*, **20** (1995), 526–528.
- [7] A.O. PITTENGER, Sharp mean-variance bounds for Jensen-type inequalities, *Stat. & Prob. Letters*, **10** (1990), 91–94.