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ABSTRACT. A univariate Jensen-type inequality is generalized to a multivariate setting.
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1. INTRODUCTION

The following theorem was proved inl[1], using Tchebycheff methods [4], [5], to extend a
result obtained in([2] for the Laplace transform. It was later reproved!in [3], [6], [7] using
Jensen’s inequality.

Theorem 1.1.Let X be a nonnegative random variable with(X) = x4 > 0 and F (X?) =
A < oo. Suppose thaf : [0,00) — Rwith f(0) = 0andg (z) = f(x) /x convex on0, co).
Then,E (f (X)) > pg (M\/u) = (#?/\) f (A\/u) and the bound is sharp.

We next provide a natural multivariate generalization of Thedrerm 1.1, using the same ap-
proach as[1], followed by examples to illustrate its application.

2. MAIN RESULT

Let S = (0,00)" and letg, ..., g, be real-valued functions ofi. For any column vector
x = (xq,... ,mn)T € S, let f(x) =1, x;9; (x) and lete; denote the™ unit column vector
in R™.
Theorem 2.1.Letg, ..., g, be convex oty , and letX = (X;,... ,Xn)T be a random column

vectorinS with B (X) =yt = (1, ..., )" andE (XXT) =X+ ppu” for covariance matrix
Y. Then,

2.1) B = Y (554 n)

i=1 ‘

)
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and the bound is sharp.

Proof. By convexity, for any; € S, there exists &; (¢;) € R™ such that

(2.2) gi (x) > g: (&) + by &) (@ —&)

forall z € S, i.e., there exists a supporting hyperplané,atience,
23) B(f (X)) = Z B (Xig: (X))
> Z B (X (0 (6) + 5. €)7 (X - )
> Zu (ser+ner (2(25) -4))

7

But
E(XX;)=E(XX"¢;) =E(XX")e; = Se; + pup.
Then, [2.2) and (2]3) together imply that
XX; Ye;
&=F ( ) Y
Hi i
yields the maximum bound which is obviously attained whérs concentrated at. O

Theorenj 2.]1 is a true multivariate extension as the following examples illustrate. As indicated
in [2] for the Laplace transform, certain extensions are only nominally multivariate and fall
within the domain of Theoreiln 1.1 because the random variables are combined in a univariate
linear combination.

3. EXAMPLES

Example 3.1.Let g; () = a; + 8] x be linear witha; € R andg; € R™ . Then
f(x)= ingi (x) = Z:UZ (i + Bl x)
i=1 =1

is a general quadratic function which can also be writterf &8) = o’z + 27 Bx where
a=(ay,...,a,)" andB = [3y,...,3,]". Then we have

E(f(X)=E (Z X (e +@TX>>

= (i + B (Sei+ pps))

=1

= mi <az-+ﬁf <i—e+u)>
i=1 !

=o'+ pu"Bu+tr (BY)

so the Theorern 2.1 bound is, not surprisingly, exact in this general quadratic case.
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Example 3.2.Letg; (v) = pi [ [}, 7; - with p; > 0 and~;; > 0. Here, they; might represent
Cournot-type price functions (inverse demand functions) for quasi-substitutable products where
x; is the supply of productandg; (x4, ..., z,) is the equilibrium price of produat given its
supply and the supplies of its alternates. Theny, (x) represents the revenue from product
andf (z) =Y, z; g; (x) represents total market revenue for the ensemble of products. In this
context, we would normally expect; € (0, 1) for viable products. Then, with probabilistic

supplies, we have

E(f(X >>§:uu%(zel+u> E:uuhII<%?+ﬂﬁ)

whereo;; is theij" element ofS. This example demonstrates that Theo@ 2.1 has an inter-
esting application in economic oligopoly theory.

In Examplg 3.Rg; (z) = " where

hi (x) = Inp; — Z%‘j Inx;
j=1
is convex onS . In general, ift : R — R is convex nondecreasing ahd S — R is convex,
theng (z) = k (h (z)) is convex onS since

k(h(Az® 4+ (1 =X 2®)) <k (Wh (W) + (1= X) h(z?))
<Ak (h (™) + (1= A) k (h (z?))

for anyz™, 2(® € S and\ € [0,1]. Other examples satisfying Theor2.1 can be generated
by composing the linear functions of Example|3.1 with convex nondecreasing functions like

k(u)=e“ k(u)=u+Vu>+1= esinh ™ u g (u) = max (0, u).
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