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ABSTRACT. For a givend-dimensional Minkowski space (finite dimensional Banach space)
with unit ball B, one can define the concept of surface area in different ways when3.

There exist two well-known definitions of surface area: the Busemann definition and Holmes-
Thompson definition of surface area. The purpose of this paper is to establish lower bounds
for the surface area of the unit ball irdadimensional Minkowski space in case of Busemann’s
definition, whend > 3.

Key words and phrasesBusemann surface area, Cross-section measure, Isoperimetrix, Intersection body, Mixed volumes,
Projection body.

2000Mathematics Subject Classificat o62A40, 46B20.

1. INTRODUCTION

It was shown by Gotab (seé [11] for details of this theorem) that in a two-dimensional
Minkowski space the surface area of the the unit ball lies between 6 and 8 where the extreme
values are attained if and only if the unit ball is a regular hexagon and a parallelogram, respec-
tively. Recall that in a two-dimensional Minkowski space the surface area is defined by the
induced norm of this space. One can also raise the following question: “What are the extremal
values of the surface area of the unit ball in-dimensional Minkowski space, wheh> 3?”

To answer this question, first the notion of surface area needs to be defined, since the norm is
no longer sufficient to define the surface area, wthen 3. Various definitions of surface area
were explored in higher dimensional Minkowski spaces (see [2,3)4, 12, 13]).

One of the definitions of surface area was given by Busemann in his papeéers [1, 2, 3]. In
[4], Busemann and Petty investigated tBissemann definition of surface aria the unit ball
whend > 3. They proved that if3 is the unit ball of ai-dimensional Minkowski spackl¢ =
(R4, || - |]), then its Busemann surface arga0B) is at most2de,_;, and is equal tQ@de,_;
if and only if B is a parallelotope. Herg, stands for the volume of the standakdlimensional
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2 ZOKHRAB MUSTAFAEV

Euclidean unit ball. They also raised the following question: “What is the extremum value
for the lower bounds of this surface area?” There have been obtained some lower bounds (not
sharp) for this surface area of the unit balldadimensional Minkowski spaces. In[12] (see

1/d
also [13]), Thompson showed that(0B) > 2¢,-1, andvg(0B) > (deg) (%) , Where

my = min{\(B)A(B°) : B acentered symmetric convex bodyRt}. In [12], Thompson
also conjectured that fat > 3 the quantityvz(0B) is minimal for an ellipsoid.
One goal of this paper is to establish some lower boundszd0dB) whend > 3. We will
also prove that Thompson’s conjecture is valid when the unit ball possesses a certain property.
Furthermore, we shall show that in general Busemann’s intersection inequality cannot be
strengthened to

d
NN = ()
€d—1

in R%. Namely, we present a counterexample to this inequali®inThis result shows that the
“duality” resemblance between projection and intersection inequalities does not always hold
(cf. Petty’s projection inequality in Sectipn 2).

We shall also show the relationship between the Busemann definition of surface area and
cross-section measures.

2. DEFINITIONS AND NOTATIONS

One can find all these notions in the books of Gardner [5] and Thompsbn [13].

Recall that aconvex bodyx is a compact, convex set with nonempty interior, and tkiat
is said to becenteredf it is centrally symmetric with respect to the originof R¢. As usual,
we denote bys?~! the standard Euclidean unit spheréRf. We write \; for ani-dimensional
Lebesgue measuie R¢, wherel < i < d, and instead ofi; we simply write). If v € S%°1,
we denote byt the (d — 1)-dimensional subspace orthogonaltcand byl, the line through
the origin parallel ta..

For a convex bodys in R¢, we define theolar bodyk° of K by

K°={yeR': (z,y) <1, € K}.

We identify R¢ and itsdual spaceR?* by using the standard basis. In that caseand \*
coincide inR*.

If K1 andK, are convex bodies iX, anda; > 0, ¢ = 1, 2, then thdinear combination(for
a1 = ap = 1 theMinkowski supof these convex bodies is defined by

a1 Ky 4+ oKy :={x : x = a1x1 + qome, x; € K}

It is easy to show that the linear combination of convex bodies is itself a convex body.
If K is a convex body iR¢, then thesupport functiorh i of K is defined by

hic(u) = sup{{u,y) 1y € K}, ue ST,

giving the distance from O to the supporting hyperplan&ofith the outward normal. Note
thatK, C Ky ifand only if hx, < hg, for anyu € S¢1,

It turns out that every support function is sublinear, and conversely that every sublinear func-
tion is the support function of some convex set (seé [13, p. 52]).

If 0 € K, then theradial functionof K, px(u), is defined by

pr(u) = max{a >0:au € K}, uec ST,
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giving the distance from 0 td, N K in the directionu. Note thatK; C K, if and only if
pr, < pk, foranyu € St Both functions have the property that fer, a, > 0

halKH-Oész (U) = alhKl (u) + a2hK2 (U) )
Pa1 Ki+az Ko (u) > 1Pk, (u) + 2Pk, (u)

for any directionu.
We mention the relation

1 d—1
(2.1) pre(u) = () ue ST,
between the support function of a convex bddynd the inverse of the radial function &F.
For convex bodie(1, ..., K,,_1, K,, in R? we denote by/ (K1, ..., K,,) theirmixed volumg
defined by

1
V(K17 ,Kn) = a /Sd—l hKndS(Kl, ...,Kn_l,u)

with dS(Kjy, ..., K,,_1, ) as themixed surface area elemeott K1,....K,,_;.

Note that we hav® (K, Ks, ..., K,,) <V (L1, Ky, ..., K,,) if K1 C Ly, thatV (aK;, ..., K,) =
aV(Ky, .., K,), if a > 0 and thatV (K, K, ..., K) = AK). Furthermore, we will write
V(K[d—1],L)instead oV (K, K, ..., K, L).

d—1

Minkowski’s inequality for mixed volumesates that i, and K, are convex bodies iR?,

then
VUKL [d — 1], K3) > XK (K)
with equality if and only ifK; and K5 are homothetic.

If K, is the standard unit ball iR?, then this inequality becomes the standard isoperimetric
inequality.

One of the fundamental theorems on convex bodies refers Bl#sehke-Santalo inequality
and states that il is a symmetric convex body iR?, then

ME)ME®) < ¢

with equality if and only if K is an ellipsoid.
The sharp lower bound is known only for zonoids. It is calledMahler-Reisner Theorem
which states that if is a zonoid inR?, then

d

<MK (K)

with equality if and only if K is a parallelotope.

Recall thatzonoidsare the limits of zonotopes with respect to the Hausdorff metric, and
zonotopesre finite Minkowski sums of centered line segments.

For a convex bodys in R? andu € S%~! we denote by\; ; (K|u') the(d — 1)-dimensional
volume of the projection of onto a hyperplane orthogonal to Recall that\;_; (K |u') is
called the(d — 1)-dimensionabuter cross-section measusebrightnesof K atwu.

The projection bodyIIK of a convex bodyK in R? is defined as the body whose support
function is given by

. ANK Felu]) = MK
hHK(U) — }:E% ( [E]) ( ) — )\d—l(K | UL),
where[u] is the line segment joining 4 to .
Note thatll KX = II(—K), and that a projection body is a centered zonoid<{fand K, are
centered convex bodies R? andI1K; = I1K,, thenK; = K.
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If K is a convex body iR¢, then

(2;> d™ < XM E)M(TIK)?) < (i)d

€d—1
with equality on the right side if and only K is an ellipsoid, and with equality on the left side
if and only if K is a simplex.
The right side of this inequality is called tetty projection inequalityand the left side was
established by Zhang (see [5]).

3. SURFACE AREA AND | SOPERIMETRIX

Let (R4, || - ||) = M4 be ad-dimensional real normed linear space, i.e@Miakowski space
with unit ball B which is a centered convex body. Theit sphereof M¢ is the boundary of the
unit ball and denoted b§ 5.

A Minkowski spaceM‘ possesses a Haar measuréor vz if we need to emphasize the
norm), and this measure is unique up to multiplication of the Lebesgue measure by a constant,
ie.,

V= O’B>\.

It turns out that it is not as easy a problem to choose a right mukipleit seems. These two

measures and\ have to coincide in the standard Euclidean space.

Definition 3.1. If K is a convex body i®?, then thed-dimensional Busemann voluneé K is
defined by
€q . €4
K) = K), ie. = :
UB( ) )\(B)/\( )7 .., op )\(B)
Note that these definitions coincide with the standard notion of volume if the space is Eu-
clidean, and thatg(B) = €,.
Let M be a surface ilR? with the property that at each poinbf A/ there is a unique tangent
hyperplane, and that, is the unit normal vector to this hyperplanezatThen theMinkowski
surface areaf M is defined by

vp(M) ::/MUB(ux)dS(x).

For theBusemann surface areag(u) is defined by

€d—1
AMBNut)

The functions (u) can be extended homogeneously to the whol¥Iéf and it turns out that
this extended function is convex (séé [4], lor [5]). Thus, this extended funetisithe support
function of some convex body iR?. We denote this convex body By, therefore ifK is a
convex body inMI¢, then Minkowski’s surface area @ can also be defined by

(3.2) vp(0K) =dV(K|d — 1], Tp).

We deduce thatg(0T5) = dA\(Tp).

From Minkowski’s inequality for mixed volumes one can see thatplays a central role
regarding the solution of thieoperimetric problenin Minkowski spaces.
~ Among the homothetjc imagesﬁg we want to specify a unique one, called tbe@perimetrix
Ty, determined by ;(0715) = dv(T5).
Proposition 3.1. If B is the unit ball ofivI¢ andTB = MTB, then

€d

l/B(aTB> == dVB(TB).

op(u) =
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Proof. We use properties of the surface area, and straight calculation to obtain
)\d_l(B)

6271
)\d_l(B)
eg_l
€d
A(B)

VB(0TB) = vp(0Ts)

=d ANTs)

)\(TB) = dVB(TB).

O

Now we define the inner and outer radius of a convex body in a Minkowski space. Note that
in Minkowski geometry these two notions are used with different meanings.(see [11], [13]). As
in [13], here these notions are defined by using the isoperimetrix.

Definition 3.2. If K is a convex body ifR?, theinner radiusof K, r(K), is defined by
r(K) = max{a : 3z € MwithaTys C K + z},

and theouter radiuof K, R(K), is defined by
R(K) = min{a : 3z € M%withaT D K + z}.

4. THE INTERSECTION BoODY

We know thatog(f) = % is a convex function and the support functionf. Since

the support function is the inverse of the radial function, we have that
p(u) = o5 (u) = e, M(B M)

is the radial function of 3.

Theintersection bodyf K is a convex body whose radial functioni¢K N u=) in a given
directionu, and we denote it by K (see [7] for more about intersection bodies). We can also
rewrite the solution of the isoperimetric probléip as

(41) TB = Edfl([B)o.

One can see th&f,z = o'~ 4Ty for a > 0.

There is an important relationship between the volume of a convex body and the volume of
its intersection body. It is calleBusemann’s intersection inequalitshich states that if{ is a
convex body inR?, then

AIK) < (6‘1—‘1)d ENL(K)

€d
with equality if and only if K is a centered ellipsoid (s€€ [5]).
Setting K = B in Busemann'’s intersection inequality and usipg](4.1), we can rewrite this
inequality as

(4.2) NTR)el < X (B).
It turns out that if is a convex body inX with 0 as an interior point, then
(4.3) IK CIIK,

with equality if and only if K" is a centered ellipsoid (see€ [8]).
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Recall that the intersection body of a centededimensional ellipsoid is a centered ellip-
soid, i.e., more precisely we have

Gdfl)\(E>

€d

I1E = E.

5. SOME LOWER BOUNDS ON THE SURFACE AREA OF THE UNIT BALL

As we mentioned in the introduction, the reasonable question is to ask how large and how
small the surface area of the unit balllef? for the Busemann definition can be. Ini [4] Buse-
mann and Petty showed thatif is the unit ball of ad-dimentional Minkowski spac®1¢,
then

I/B(aB) S 2d€d,1

with equality if and only ifB is a parallelotope.
In this section we establish lower bounds for the Busemann surface area of the unit ball in a
d-dimensional Minkowski space wheih> 3.

Theorem 5.1.1f B is the unit ball of ad—dimensional Minkowski spadd?, then

24\ @
VB(aB) Z Ed_l(d) .

Proof. SinceTs = ¢;_1(IB)° 2 €¢4-1(11B)°, we get by Zhang'’s inequality

ATp) > e A((TIB)) > (Qj) a4l \4(B),

Therefore
2
dNY BN (Tg) > (j) el ..
From Minkowski's inequality it follows thav$ (0B) > d‘\*~'(B)\(Ty). Hence the result
follows. O

We note tha(*?) > 24,

Theorem 5.2.1f B is the unit ball of ad-dimensional Minkowski spadd?, then

vp(0B) > dey (M)d

2
€4

with equality if and only ifB is an ellipsoid.
Proof. It follows from Busemann'’s intersection inequality that
MTp) < (eg/e)A(B).

Therefore
MTp)NTE) < (€/e) A (B)MTp).
Using Minkowski’s inequality we get

vL(0B) .
deeg 63 2 )‘(TB))‘(TB)'
Hence the inequality follows, and one can also see that equality holds if and aBlysifin
ellipsoid. 0
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Let us defingur, (1) = % i.e., the Holmes-Thompson definition of volume s
(seel[6] or[13]) in al-dimensional Minkowski spacdR?, T5).
It follows from the Blaschke-Santalo inequality that
1
(A(TB)A(TB)) !
€| —— 5
€d
with equality if and only if B is an ellipsoid.
We obtain the following.

> W1y (TB)

Corollary 5.3. If B is the unit ball of ad-dimensional Minkowski spadd?, then
vp(0B) = dury, (Ts),
with equality if and only ifB is an ellipsoid.
We show that Thompson’s conjecture is valid when the unit ball possesses a certain property.

Theorem 5.4.1f B is the unit ball ofM? with an outer radius of?(B), then

with equality if and only ifB = R(B)T.
Proof. SinceT; is the solution of the isoperimetric problem, we have

d d a d
— > S =d VB(TB) > —VB(B).
vy {(B) T v (Tp) R

Hence the result follows, sinae;(B) = ¢;. Obviously, if equality holds, then we gét =
R(B)Ts.If B= R(B)Tg, then we have

vg(0B) = R 'wp(9Ts) = %R%B(TB) — —up(B).

d
R
O
Corollary 5.5. If B is the unit ball of al—dimensional Minkowski spadd“ such thatR(B) <
1, then
vp(0B) > dey,
with equality if and only ifB = 7.

Proof. The inequality part and the implication follow from Theorgm|5.4.
Now assume thak(B) < 1 andvg(0B) = dey. ThenB C T, and

d?e? = dVY(Bld — 1],Tg) > d" " (B)\(TB).
This gives us thak(B) > A(T5). Hence\(B) = \(T), and this is the case whéh= T. [
In [12], Thompson showed that if the unit ball is an affine regular rombic dodecahg:dron in
R3, thenvy(OB) = dey = 47. Therefore, for a rombic dodecahedronRi either B = T

or R(B) > 1. The first one cannot be the case, sincgiis a rombic dodecahedron, then the
facets of(/ B)° become “round” (cf.[[183, p. 153]).

Corollary 5.6. If R(B) is the outer radius of the unit ball @ in a d-dimensional Minkowski
spaceM?, then

R(B) > -4

2641
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Proof. The result follows from the fact that; (0B) < 2de,_, and Theorerh 5/4. O
In [9], it was proved tha?(B) < 22’% with equality if and only ifB is a parallelotope.

Theorem 5.7.1f B is the unit ball of ad-dimensional Minkowski spadd® such that\(7) >
A(B), then

vp(0B) > deq,
with equality if and only ifB = 7.
Proof. We can rewrite\(T3) > A(B) as
N B)A(Ts) > ¢t
This gives us
Vi(0B) = d*VY(Bld — 1], Tg) > d*\*"H(B)XN(Tp) > d*c.
Hence the result follows. Obviously, B = T, thenvg(0B) = deq. If vg(0B) = deg,

theAn it follows from Minkowski’s inequality }haB and T must be homothetic. Therefore
AMTg) = A(B), and this is the case whdh = Tj. O

From Theore7 it follows that iB is a rombic dodecahedron M?, then\(Ts) < A(B).

In [10] it was conjectured that if; is the isoperimetrix for the Holmes-Thompson definition
in ad-dimensional Minkowski spacki?, then

AIp) > \(B)

with equality if and only if B is an ellipsoid. A A
Therefore, ifB is a rombic dodecahedron R?, then\(I5) > A\(T5).

Problem 5.1. If »(B) is the inner radius of the unit bal for the isoperimetrinB, is it then
true that

r(B) <1
with equality if and only ifB is an ellipsoid?

The answer of this question will tell us whether there exists a unit ball sucithat B. For
the Holmes-Thompson definition of the isoperimettix r(B) < 1 holds with equality if and
only if B is an ellipsoid (see [10] of [1.3]).

In [13] (Problem 7.4.3, or p. 245) A.C. Thompson asked whether Busemann'’s intersection
inequality can be strengthened to

d
NV EOAN(TE)) > (—) .
€d—1
It is easy to show that equality holds for an ellipsoid. Setfihg- B, we get
ATs) > A(B).

As we have shown, the last inequality does not hold wBeis a rombic dodecahedron in
M3,

Now we show the relationship between cross-section measures and the Busemann definition
of surface area.
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Proposition 5.8. If the unit ball B of M satisfies

)\d_1(B N ul))\l(B|lu) < 2€d—1
/\(B) T g

for eachu € S%1, then

vp(0B) > deg.

Proof. It follows from the hypothesis of the proposition that for ang S9!

prs(w)hp(u) < Ei—de).

Using [2.1), we gethp(u) < A(B)hr, (u) for each direction, and therefore

EdB g TB)\(B)

Hence the result follows from properties of mixed volumes (3.2). 0J
Problem 5.2.

[1]

[2]

[3]

[4]
[5]

[6]

[7]
[8]
[9]

[10]

[11]

a) Does there exist a centered convex badin R? such that
)\d,l(KﬂuL))\l(K\lu) > 2€d71
)\(K) €q

for eachu € S9-1?
b) Is it true that for a centered convex bodyin R?

)\d,l(KﬂuL))\l(K\lu) B 2€d71
A(K) Rz
holds for each: € S~ only whenK is an ellipsoid?
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