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ABSTRACT. We show that the expectation of a class of functions of the sum of weighted iden-
tically independent distributed positive random variables is Schur-concave with respect to the
weights. Furthermore, we optimise the expectation by choosing extra-weights with a sum con-
straint. We show that under this optimisation the expectation becomes Schur-convex with respect
to the weights. Finally, we explain the connection to the ergodic capacity of some multiple-
antenna wireless communication systems with and without adaptive power allocation.
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1. INTRODUCTION

The Schur-convex function was introduced by I. Schur in 1923 [11] and has many important
applications. Information theory [14] is one active research area in which inequalities were
extensively used.[ [2] was the beginning of information theory. One central value of interest
is the channel capacity. Recently, communication systems which transmit vectors instead of
scalars have gained attention. For the analysis of the capacity of those systems and for analyzing
the impact of correlation on the performance we use Majorization theory. The connection to
information theory will be further outlined in Sectiph 6.

The distribution of weighted sums of independent random variables was studied in the liter-
ature. LetXy, ..., X,, be independent and identically distributed (iid) random variables and let

(11) F(Cla7cn7t>:PT<CIX1++Can §t>
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2 HOLGERBOCHE AND EDUARD A. JORSWIECK

By a result of Proschan [13], if the common densityXqf . . . , X,, is symmetric about zero and
log-concave, then the functidn is Schur-concave ifry, . . ., ¢,). For nonsymmetric densities,
analogous results are known only in several particular cases of Gamma distributions [4]. In [12],
it was shown for two# = 2) iid standard exponential random variables, thas Schur-convex
ont < (¢; + c2) and Schur-concave on> %(cl + ¢9). Extensions and applications of the
results in[12] are given in [9]. For discrete distributions, there are Schur-convexity results for
Bernoulli random variables in [8]. Instead of the distribution[in(1.1), we study the expectation
of the weighted sum of random variables.

We define an arbitrary functiofi: R — R with f(z) > 0 for all x > 0. Now, consider the

following expectation
k=1

with independent identically distributed posiﬂlleandom variablesu,, . .., w, according to
some probability density function(w) : p(z) = 0 Va < 0 and positive numbers,, ..., u,
which are in decreasing order, i@, > ps > --- > u, > 0 with the sum constraint

Zﬂk =1L
k=1

The functionG (i) with the parameterg(z) = log(1 + pz) for p > 0 and with exponen-
tially distributedw, . . . , w, is very important for the analysis of some wireless communication
networks. The performance of some wireless systems depends on the parameters.,.
Hence, we are interested in the impactuef. . ., i, on the functionG(u4, . .., u,). Because
of the sum constraint ilﬂl), and in order to compare different parameter'setsgu!, . . ., ul]
andu? = [u2, ..., 12], we use the theory of majorization. Majorization induces a partial order
on the vectorsg:' andy? that have the samig norm.

Our first result is that the functio@ () is Schur-concave with respect to the parameter vector
o= [u1, ..., 1y, i.e. if u! majorizesu? thenG(u') is smaller than or equal t6(1:?).

In order to improve the performance of wireless systems, adaptive power control is applied.
This leads mathematically to the following objective function

()

for fixed parameterg, ..., 4, and a sum constrainX_,_, p, = P. We solve the following
optimisation problem

(1.3) I(u, P)=1(pt1y--- i, P) =max H(p1,...,Pp; 1,5 fin)

(1.2) Glp) = Glp, .., 1) = E

H(p,p) = H(p1,.. -, Pni i1, ) = E

s.t.Zpk:P and pr >0 1<k<n
k=1
for fixed 11, . .., . The optimisation in[(1]3) is a convex programming problem which can be
completely characterised using the Karush-Kuhn-Tucker (KKT) conditions.
Using the optimality conditions fromj (1.3), we characterise the impact of the parameters
i, - - -, e ON the function/ (i, P). Interestingly, the functiod (., P) is a Schur-convex func-
tion with respect to the parameter vector (i, . . ., u1,), i.€. if ' majorizesu® thenI(y', P)
is larger than/ (u, P) for arbitrary sum constrain®.

LA random variable is obviously positive, i*r(w; < 0) = 0. Those variables are called positive throughout
the paper.
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The remainder of this paper is organised as follows. In the next, Sé¢tion 2, we introduce the
notation and give definitions and formally state the problems. Next, in S¢gtion 3 we prove that
G(u) is Schur-concave. The optimal solution of a convex programming problem in Sgfction 4 is
then used to show thd{, P) is Schur-convex for alP > 0. The connection and applications
in wireless communications are pointed out in Sedtion 6.

2. BASIC RESULTS, DEFINITIONS AND PROBLEM STATEMENT
First, we give the necessary definitions which will be used throughout the paper.

Definition 2.1. For two vectors,y € R" one says that the vectarmajorizes the vectoy and

writes - " . .
x =y If ZxkEZyk ,m=1,....,n—1. and Zxk:Zyk.
k=1 k=1 k=1 k=1

The next definition describes a functidrwhich is applied to the vectossandy with x - y:

Definition 2.2. A real-valued functiond defined on4 ¢ R" is said to beSchur-convexn .4
if

x>y on A= d(x) > P(y).
Similarly, ® is said to beschur-concaven A if

x>y on A= d(x) < P(y).

Remark 2.1. If the function®(x) on .4 is Schur-convex, the function®(x) is Schur-concave
on A.

Example 2.1. Suppose that,y € R’ are positive real numbers and the functibms defined
as the sum of the quadratic components of the vectors®héx) = >, |z¢|>. Then, itis
easy to show that the functiaky, is Schur-concave oR}, i.e. if x > y = ®y(x) < Dy(y).

The definition of Schur-convexity and Schur-concavity can be extended if another function
U : R — Ris applied to?(x). Assume tha® is Schur-concave, if the functioh is monotonic
increasing then the expressidn®(x)) is Schur-concave, too. If we take for example the
function U(n) = log(n) for n € R, and the function®, from the example above, we can
state that the composition of the two functiohd, (x)) is Schur-concave oR’;. This result
can be generalised for all possible compositions of monotonic increasing as well as decreasing
functions, and Schur-convex as well as Schur-concave functions. For further reading see [11].

We will need the following lemma (see [11, Theorem 3.A.4]) which is sometimes called
Schur’s condition. It provides an approach for testing whether some vector valued function is
Schur-convex or not.

Lemma 2.2. LetZ C R be an open interval and let : 7" — R be continuously differentiable.
Necessary and sufficient conditions foto be Schur-convex afi* are

f is symmetric onZ"

and
aof  of .
— - > < <n.
(i — ) (8% ax]) >0 foral 1<i,j<n
Sincef(x) is symmetric, Schur’s condition can be reduced as [11, p. 57]
of  of
2.1 - L L) >0
( ) (ml x2) <8x1 8332) - 0
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From Lemma 22, it follows thaf(x) is a Schur-concave function & if f(x) is symmetric
and

Finally, we propose the concrete problem statements: At first, we are interested in the impact
of the vector. on the functionG ().
This problem is solved in Sectidn 3.

Problem 1. Is the functionG(u1, ..., u,) in (1.2) a Schur-concave function, i.e. with =
11, -+ pn) @NAp® = [ud, ..., p7] it holds

phom = Gu') < G(u?)?
Next, we need to solve the following optimisation problem in order to characterise the impact

of the vector. on the function/ (u, P).
We solve this problem in Sectipn 4.

Problem 2. Solve the following optimisation problem

(2.3) I(pa,- -5 pin, P) =max H(p1, ..., pni ;- s fn)

s.t.Zpk:P and pr>0 1<k<n
k=1
for fixed 1, . . ., ftn.
Finally, we are interested in whether the function[in(2.3) is Schur-convex or Schur-concave
with respect to the parameters, . . ., u,,. This leads to the last Problem statement 3.
This problem is solved in Sectipn 5.
Problem 3. Is the function/(u, P) in (2.3) a Schur-convex function, i.e. for &l > 0

pt =y’ = I(p', P) < I(1?, P)?
3. SCHUR-CONCAVITY OF G(u)

In order to solve Probleir] 1, we consider first the functi¢m) = log(1 + «). This function
naturally arises in the information theoretic analysis of communication systerms [14]. That
followed, we generalise the statement of the theorem for all concave fungtionsTherefore,
Theorenj 3.l can be seen as a corollary of The¢grein 3.3.

Theorem 3.1. The function

(3.1) Ci(u) = Cilp, .-, 1) = E |log <1+Zﬂkwk)]
k=1
with iid positive random variables, ..., w, is a Schur-concave function with respect to the

parametersuy, . . ., fiy.

Proof. We will show that Schur’s conditiori (2.2) is fulfilled by the functioh(n) with p =
[p1, - - ., ). The first derivative o) (1) with respect tq:; andyus, is given by

001 |: w1 }

O 1+ Zk:1 MW

801 |: w9 }
3.3 ay= S ! .
(33) > O L+ Hwy

(3.2) o
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Sincepy > o by definition, we have to show that

(3.4) E[ kS ]go

Z 4wy + faws
with z = 1+ "7 _, iwy.. The expectation operator in (8.4) can be written asfald integral
over the probability density functiongw,), ..., p(w,). In the following, we show that for all
z2>0
(3.5) / / g(wy, wa, 2)p(w1)p(wsz)dwidw,; <0
with g(wy, ws, z) = ;=2 Rewrite the double integral ifi (2 |. 5) as

(3.6) / N / " (s, wa, 2)p(w: )p(ws)dunduws

:/w1 0/ | (9(w1, w2, 2) + g(wa, wy, 2)) p(wi)p(w2)dwy dws

because the random variables andw, are independent identically distributed. [n (3.6), we
split the area of integration into the area in which > w,; andw, > w; and used the fact,
that g(wy, we, z) for wy > ws is the same ag(w,, wy, z) for we > w;. Now, the expression
g(wy, we, 2) + g(ws, wy, z) can be written for alk > 0 as

(w1 — wa) (1 we + powy — pawy — floWs)
(2 + prwr + pows)(z + pws + powy)

g(wi,wa, 2) + g(wa, wy, 2) =

_ (w1 — w)*(p2 — 1)
(3.7) = .
(2 + prwy + pows) (2 + prws + prows )
From assumptiop, < x; and [3.7) follows[(3.6) and (3.4). O

Remark 3.2. Interestingly, Theorein 3.1 holds for all probability density functions which fulfill
p(z) = 0 for almost everyr < 0. The main precondition is that the random variahlesand
w, are independent and identically distributed. This allows the representatjon]in (3.6).

Theoren] 3]l answers Problérn 1 only for a specific choice of fungtiaf. We can gen-
eralise the statement of Theorém|3.1 in the following way. However, the most important, in
practice is the case in whicf(z) = log(1 + x).

Theorem 3.3. The functionG(y) as defined in[(1]2) is Schur-concave with respegt tbthe
random variablesu, .. ., w, are positive identically independent distributed and if the inner
function f () is monotonic increasing and concave.

Proof. Let us define the difference of the first derivativesfop ", _, 1,wy) with respect tqu,

andy, as
A(wy, ws) = (8f (Zgzllukwk) _of (Zgzﬂkwk)> |

Since the functiory is monotonic increasing and concayé(z) < 0 and f’(x) is monotonic
decreasing, i.e.

f’(xl) < f/(ZEQ) for all T1 > To
Note, thatw; > wy andu; > ps anduyws + pows > pyws + powy. Therefore, it holds

(wy — wy) (f’(mwl + pigws + Y prwg) — [ (aws + pawr + Y ukwk)> <0

k=3 k=3
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Using equation (3]6), it follows

(3.8) / / (A(wr, w2) = A(ws, wr)) p(wr)p(wz)dwidws <0
w1=0 Jws=0
because the densities are positive. This verifies Schur’s condition for (1.2). O

The condition in Theorein 3.3 can be easily checked. Consider for example the function

oz
14z

(3.9) k(x)

It is easily verified that the condition in Theorém]3.3 is fulfilled by [3.9). By application of
Theorenj 3.3 it has been shown that the functiofx) defined as

K(o = |
L+ ey Hrwe

is Schur-concave with respectfg, . . ., 1.

4. OPTIMALITY CONDITIONS FOR CONVEX PROGRAMMING PROBLEM max H (1, p)

Next, we consider the optimisation problem|in {2.3) from Prollém 2. Here, we restrict our
attention to the casg(z) = log(1 + x). The motivation for this section is to find a character-
isation of the optimap which can be used to characterise the impagt ahder the optimum
strategyp on H(u, p). The results of this section, mainly the KKT optimality conditions are
used in the next section to show thét.., p) with the optimalp*(x) is Schur-convex.

The objective function is given by

log (1 + ZPWW%)]

k=1

and the optimisation problem reads

(4.2) p" = argmax Cyo(p, u) S.t. Zpk =1landp,>0 1<k<n.
k=1

The optimisation problem irj (4.2) is a convex optimisation problem. Therefore, the Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient for the optimality of gonf&].
The Lagrangian for the optimisation problem{in (4.2) is given by

(43) £(p7)‘177/\nay> :CQ(pay’)-'—Z)\kpk—'—V (P_Zpk)
k=1

k=1

with the Lagrangian multipliev for the sum constraint and the Lagrangian multipligers .., A,
for the positiveness qfi, . . ., p,. The first derivative of (4]3) with respect tpis given by

dL { Hywy

4.4 & _E a
(44) dp; L+ >y MkDrwy

:|‘|')\l—l/.
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The KKT conditions are given by

E l Hywy

- =v—X\ 1 <1 <n,
L+ Nkpkwk}

v >0,
e >0 1<i<n,
(4.5) P-> "p=1
k=1
We define the following coefficients
e - 1 F
(4.6) ar(p) = / et : dt.
( ) 0 l:!_,z[ék 1+ tplm (1 + t,ukpk)Q

These coefficients if (4.6) naturally arise in the first derivative of the Lagrangian ¢f (4.2) and
directly correspond to the first KKT condition in (4.5) where we have used the fact that

wl & _ n
L +Zk:1pkukwk] [ 'Jo

Furthermore, we define the set of indices for whigh- 0, i.e.

4.7) I(p)=1{ke[l,...,n7|:pr >0}

We have the following characterisation of the optimum p@int

Theorem 4.1. A necessary and sufficient condition for the optimality o$
{k1,kos € Z(p) = au, = ay, and
(4.8) k&€ Z(p) = ar < max ay}.
lez(p)

This means that all indicgswvhich obtainp; greater than zero have the samge= max;c(1,... n,]-
Furthermore, all otheky; are less than or equal ta;.

Proof. We name the optimal poir, i.e. from [4.2)

A~

=arg max C(p,p, ).
p gHPHSRPiEO (ppu)

Let theu, ..., u,, be fixed. We define the parametrised point
p(r)=(1—-7)p+7p
with arbitraryp : ||p|| < P, p; > 0. The objective function is given by

nr nrt
(4.9) C(1) =Elog (1 + pzmukwk +p7 Z(pk — ﬁk),ukwk> .
I=1 I=1

The first derivative of[(4]9) at the point= 0 is given by

nr

= (px — D)o (D)

7=0 k=1

dC(7)
dr
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with oy (p) defined in [(4.5). It is easily shown that the second derivativé’@f) is always
smaller than zero for all < 7 < 1. Hence, it suffices to show that the first derivativetfr)
at the pointr = 0 is less than or equal to zero, i.e.

nr

(4.10) > ok — pr)on(p) < 0.

k=1

We split the proof into two parts. In the first part, we will show that the conditiof inj (4.8) is
sufficient. We assume that (4.8) is fulfilled. We can rewrite the first derivativ&(oj at the
pointT = 0 as

nr

Q=> (b — pr)ow(pr)

k=1

n

n
= Praw(p) — Zpkoék(ﬁ)
k=1 k=1

=

(4.11) = max o(p) Z D —Zplozl(ﬁ).
) I=1

ke[l ..... TLT] ZEI(]}

But we have that

.....

.....

i.e. (4.10) is satisfied.
In order to show that condition (4.8) is a necessary condition for the optimality of power
allocationp, we study two cases and prove them by contradiction.

(1) Assume[(4]8) is not true. Then we havé & Z(p) andk, € Z(p) with the following
properties:

max o D = Ol (p
1<kny (p) o(P)

-----

nr

> (= Br)ow(p) < 0

=1

which is a contradiction.
(2) Assume there is &y : oy, > ay With ky & Z(p) andk € Z(p), then setp,, = 1 and

-----

nr

Z(ﬁk — pr)ay < 0.

k=1
This completes the proof of Theor¢m4.1. O
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5. SCHUR-CONVEXITY OF [(u, P)

We use the results from the previous section to derive the Schur-convexity of the function
I(u, P) for all P > 0. The representation of the,(p) in (4.6) is necessary to show that the
condition% > Zi—i is fulfilled for all 1 <[ < n — 1. This condition is stronger than majoriza-
tion, i.e. it follows thatp > y [11, Proposition 5.B.1]. Note that,_, px = > ,_, 1ix = 1. The
result is summarised in the following theorem.

Theorem 5.1. For all P > 0, the function/ (4, P) is a Schur-convex function with respect to
the parameters, . . ., ft,.

Proof. The proof is constructed in the following way: At first, we consider two arbitrary pa-
rameter vectorg' andy? which satisfyu! = 2. Then we construct all possible linear combi-
nations ofu! andu?, i.e. u(0) = 0u® + (1 — O)u'. Next, we study the parametrised function
I(u(0)) as a function of the linear combination paraméteWe show that the first derivative of
the parametrised capacity with respect tis less than or equal to zero for all< § < 1. This
result holds for all.! andy?. As a result, we have shown that the functigp) is Schur-convex
with respect tqu.

With arbitrary ;! andp? which satisfyu! = 12, define the vector
(5.1) p(O) = 0p* + (1 - 0)u'!
forall 0 < 6 < 1. The parameter vectgr(#) in (5.1) has the following properties which will
be used throughout the proof.

e The parametrisation if (§.1) is order preserving between the vectansdy?, i.e.
VO <0y <6y < 1oy = p(1) = p(02) = p(0h) = p(0) = pi'.

This directly follows from the definition of majorization. E.g. the first inequality is
obtained by

1(02) = Oopi® + (1 — Ot > Oop® + (1 — O p® = pi®.

e The parametrisation ifh (8.1) is order preserving between the elements, i.e. for ordered
elements inu! andy?, it follows that for the elements ip(#), forall 0 < 6 < 1,

V1 < l < nr — 1: /Ll<9) > ,ul+1(0).

This directly follows from the definition irj (51).

The optimum power allocation is given by(9), ..., p, (). The parametrised objective func-
tion H(u(0), p(0)) as a function of the parameteis then given by

H(0) = Elog (1 +p) uk(Q)pk(e)wk>

k=1

(5.2) — Elog (1 +p > (i + 007 — ui))m(@w) .

k=1
The first derivative of| (5]2) with respect éds given by

dH(0) _ o (S (k= pm)pn(O)wy + 252 (i + 0(u} — 11})
do Lo > (i + 0y — 1) )i (0w

Let us consider the second term(in (5.3) first. Define

Or(0) = (i +0(py — 1)) Yk =1,....n.

(5.3)
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Then we have

n

dpr(0) br(0)wy, o dpe(9)
(5.4) ; de E(1+Zzzl¢k(0>pk(9)wk)_; do s (6).

In order to show thaf (5]4) is equal to zero, we define the indd®r which holds

(5.5) W) o vi<k<m and PO g ks
de do

We split the sum in(5]4) in two parts, i.e.

5.6 6 g).

Foralll < k < m we have from[(5.5) three cases:
e First casep,,(f) > 0 and obviouslyp,(0) > 0, ..., p,,—1(0) > 0. It follows that

a1(0) = az(0) = -+ =, (0)

e Second case: There exists @n> 0 such thatp,,(#) = 0 andp,,(6 + ¢) > 0 for all
0 < e < ¢. Therefore, it holds

(5.7) aj(0+¢€) == a,(0+e¢).

e Third case: There exists an > 0 such thatp,,(¢) = 0 andp,,(6 —¢) > 0 for all
0 < e < €. Therefore, it holds

(5.8) a1(f—€) =+ =a,(0—e).

Next, we use the fact that if andg are two continuous functions defined on some closed
interval O, f,g : O — R. Then the set of pointse O for which f(t) = g¢(t) is either empty
or closed.

Assume the case in (5.7). The set of poififer which a;(0) = o, () is closed. Hence, it
holds

(5.9) ar(0) = lir% ar(0+¢€) = lir% ar(0 +¢€) = a1(0).
For the case irf (58), it holds
ag(f) = lir%ak(e —€) = lir% a1(0 —e€) = ay1(0).

The consequence fror (5.9) and (5) is that all activeith p,, > 0 at point¢ and allt which

occur or vanish at this poigtfulfill «;(0) = as(0) = - -+ = a,,,(#). Therefore, the first addend
in (5.6) is

— dpi(0) - dpi(0) _

; o —0(1(9); =0

The second addend in (5.6) is obviously equal to zero. We obtaip for (5.3)
dH(0) _ o ( >k (1 — 1) (0)wi ) |

do N\ T+ (i + (g — 1))k (0)wy,
We are going to show that
- pk(e)wk
(5.10) — 1E< - >§0.
,;(M'“ R D e (17 + Oy, — 1)) pr(0)wy,
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We define
ar, = i — M
l
51 = Z g
k=1
S, =0
S0 = 0
Therefore, it holds that, > 0 for all 1 < & < n. We can reformulat¢ (5.10) and obtain
n—1
(5.11) Zsl(bl(e) —bi1(0)) >0
=1
with

pi(0)w )
b(0) =E ~ :
0 =2( s o o
The inequality in[(5.1]1) is fulfilled if
bl(e) > bl+1(9)'
The termb; in (B) is related tay, from (4.8) by
pi(8)
().
(0 ()
As a result, we obtain the sufficient condition for the monotony of the parametrised function
H(0)
pi(0) _ piya(0)
(5.12) > :
m(0) ~ pura(6)
As mentioned above this is a stronger condition than that the vpataajorizes the vecto.
From [5.12) it follows thaj, = p.
Finally, we show that the condition in (5]12) is always fulfilled by the optimpimin the

following, we omit the indexX. The necessary and sufficient condition for the optipha that
for activep, > 0 andp,,; > 0 it holds

bi(0) =

ap — 41 = 07

i.e.
> 0 * s}
513 / et t—dt—/ e t)———————dt =0
(5.13) 0 ft )1 + ptup 0 f )1 + ptpsapiga
with
P 1+ ptyupr Ptukpk
and

git) = (1 + ptpp) ™' (1 + ptpugapien)
From (5.13) it follows that

/0 T e 0at) (1 — s — () (o1 — praa)) dt = 0.

[Tt rwatn (B Yo

P — Pi+1 PHIMI+1

This gives
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and

_ 1 [o¢] [o¢]
(5.14) st / e f(t)gi(t)dt — / e f(H)g(t)tdt = 0.
Pr — Pi+1 PHiMi+1 Jo 0

Note the following facts about the functiori$t) andg,(t)
gt) >0 VO<t<oo f(t)>0 VO0<t<oo

dg(t df (¢
(5.15) %go VO0<t< oo %go V0 <t< oo

By partial integration we obtain the following inequality

(5.16) /OOO fOat) A — tye™'dt = (f()g(t)te™) -, — /OOO Wte_tdt > 0.

From [5.16) and the properties 6ft) andg,(¢) in (5.15) follows that
| etswatin = [ oao
0

0
Now we can lower bound the equality [n (5]14) by

_ 1 * -
0= M=t / e f(H)gu(t)dt — / e f()a(t)tdt
= P phatutr Jo 0

— 1
(517) Z 2] Hi+1 _1.
Pt — Di+1 PRI+

From (5.17) it follows that

1> = pur 1
Pt — Di+1 PRI+

and further on

(5.18) = s < (P — Dig1) Pl -
From (5.18) we have

(1 — prusap) < pusr (1 — prupis)
and finally

(5.19) PHIDL > PHPI1-

From ) follows the inequality i (5.]L2). This result holds forallandy? with >~ ui =
> i ki = 1. As aresult(u) is a Schur-convex function gf. This completes the proof.[]

6. APPLICATION AND CONNECTION TO WIRELESS COMMUNICATION THEORY

As mentioned in the introduction, the three problem statements have an application in the
analysis of the maximum amount of information which can be transmitted over a wireless vec-
tor channel. Recently, the improvement of the performance and capacity of wireless systems
employing multiple transmit and/or receive antennae was pointed out/in/[15, 6]. Three scenarios
are practical relevant: The case when the transmitter has no channel state information (CSl), the
case in which the transmitter knows the correlation (covariance feedback), and the case where
the transmitter has perfect CSI. These cases lead to three different equations for the average
mutual information. Using the results from this paper, we completely characterize the impact
of correlation on the performance of multiple antenna systems.

We say, that a channel is more correlated than another channel, if the vector of ordered
eigenvalues of the correlation matrix majorizes the other vector of ordered eigenvalues. The
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average mutual information of a so called wireless multiple-input single-output (MISO) system
with n transmit antennae and one receive antenna is given by

nr
(6.1) Crocst(fi1, - s finy, p) = Elog, (1 +p) ukwk>

k=1

with signal to noise ratio (SNR) and transmit antenna correlation matR% which has the
eigenvalueguy, ..., u,, and iid standard exponential random variahbles. .., w,.. In this
scenario it is assumed that the receiver has perfect channel state information (CSI) while the
transmit antenna array has no CSI. The transmission strategy that leads to the mutual informa-
tion in (6.1) is Gaussian codebook with equal power allocation, i.e. the transmit covariance
matrix S = Exx”, with transmit vectorsc that is complex standard normal distributed with
covariance matris, is the normalised identity matrix, i.8. = nLI.

The ergodic capacity irf (6.1) directly correspondstoin @). Applying Theorem 3]1,
the impact of correlation can be completely characterized. The average mutual information is a
Schur-concave function, i.e. correlation always decreases the average mutual information. See
[2] for an application of the results from Theor¢m|3.1. If the transmitter has perfect CSI, the
ergodic capacity is given by

CpCSI(:U/la ooy Moy ,0) = ElogQ (1 + PZMM%) .

k=1

This expression is a scaled version[of [6.1). Therefore, the same analysis can be applied.

If the transmit antenna array has partial CSl in terms of long-term statistics of the channel,
i.e. the transmit correlation matriR, this can be used to adaptively change the transmission
strategy according t@, ..., u,,. The transmit array performs adaptive power contrgl)
and it can be shown that the ergodic capacity is given by the following optimisation problem

nr
(6.2) Cevcst (11, finy ) = max Elog, (1 +p mew) .
B k=1

The expression for the ergodic capacity of the MISO system with partial CSI'ih (6.2) directly
corresponds t@s in (4.7). Finally, the impact of the transmit correlation on the ergodic capacity
in (6.2) leads to Problefr] 3, i.e. to the resultin Theofer 5.1. Ih [10], Theorgm 4[1 and 5.1 have
been applied. Interestingly, the behavior of the ergodic capacify ih (6.2) is the other way round:
it is a Schur-convex function with respectdg i.e. correlation increases the ergodic capacity.

7. NOTE ADDED IN PROOF

After submission of this paper, we found that the cumulative distribution function (cdf) of
the sum of weighted exponential random variableq in| (1.1) has not the same clear behavior
in terms of Schur-concavity like the function (B.1). [ [3], we proved that thefedf) =
Pri> 7, mwe < x] is Schur-convex for alk < 1 and Schur-concave for all > 2. Further-
more, the behavior of' (z) betweenl and2 is completely characterized: For< x < 2, there
are at most two global minima which are obtained for= ... = p; = % andug; = ... =
i, = 0 for a certaink. This result verifies the conjecture by Telatarlin/[15].
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