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ABSTRACT. We show that the expectation of a class of functions of the sum of weighted iden-
tically independent distributed positive random variables is Schur-concave with respect to the
weights. Furthermore, we optimise the expectation by choosing extra-weights with a sum con-
straint. We show that under this optimisation the expectation becomes Schur-convex with respect
to the weights. Finally, we explain the connection to the ergodic capacity of some multiple-
antenna wireless communication systems with and without adaptive power allocation.
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1. I NTRODUCTION

The Schur-convex function was introduced by I. Schur in 1923 [11] and has many important
applications. Information theory [14] is one active research area in which inequalities were
extensively used. [2] was the beginning of information theory. One central value of interest
is the channel capacity. Recently, communication systems which transmit vectors instead of
scalars have gained attention. For the analysis of the capacity of those systems and for analyzing
the impact of correlation on the performance we use Majorization theory. The connection to
information theory will be further outlined in Section 6.

The distribution of weighted sums of independent random variables was studied in the liter-
ature. LetX1, . . . , Xn be independent and identically distributed (iid) random variables and let

(1.1) F (c1, . . . , cn; t) = Pr(c1X1 + · · ·+ cnXn ≤ t).
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2 HOLGER BOCHE AND EDUARD A. JORSWIECK

By a result of Proschan [13], if the common density ofX1, . . . , Xn is symmetric about zero and
log-concave, then the functionF is Schur-concave in(c1, . . . , cn). For nonsymmetric densities,
analogous results are known only in several particular cases of Gamma distributions [4]. In [12],
it was shown for two (n = 2) iid standard exponential random variables, thatF is Schur-convex
on t ≤ (c1 + c2) and Schur-concave ont ≥ 3

2
(c1 + c2). Extensions and applications of the

results in [12] are given in [9]. For discrete distributions, there are Schur-convexity results for
Bernoulli random variables in [8]. Instead of the distribution in (1.1), we study the expectation
of the weighted sum of random variables.

We define an arbitrary functionf : R → R with f(x) > 0 for all x > 0. Now, consider the
following expectation

(1.2) G(µ) = G(µ1, . . . , µn) = E

[
f

(
n∑

k=1

µkwk)

)]
with independent identically distributed positive1 random variablesw1, . . . , wn according to
some probability density functionp(w) : p(x) = 0 ∀x < 0 and positive numbersµ1, . . . , µn

which are in decreasing order, i.e.µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 with the sum constraint
n∑

k=1

µk = 1.

The functionG(µ) with the parametersf(x) = log(1 + ρx) for ρ > 0 and with exponen-
tially distributedw1, . . . , wn is very important for the analysis of some wireless communication
networks. The performance of some wireless systems depends on the parametersµ1, . . . , µn.
Hence, we are interested in the impact ofµ1, . . . , µn on the functionG(µ1, . . . , µn). Because
of the sum constraint in (1), and in order to compare different parameter setsµ1 = [µ1

1, . . . , µ
1
n]

andµ2 = [µ2
1, . . . , µ

2
n], we use the theory of majorization. Majorization induces a partial order

on the vectorsµ1 andµ2 that have the samel1 norm.
Our first result is that the functionG(µ) is Schur-concave with respect to the parameter vector

µ = [µ1, . . . , µn], i.e. if µ1 majorizesµ2 thenG(µ1) is smaller than or equal toG(µ2).
In order to improve the performance of wireless systems, adaptive power control is applied.

This leads mathematically to the following objective function

H(p, µ) = H(p1, . . . , pn; µ1, . . . , µn) = E

[
f

(
n∑

k=1

pkµkwk

)]
for fixed parametersµ1, . . . , µn and a sum constraint

∑n
k=1 pk = P . We solve the following

optimisation problem

(1.3) I(µ, P ) = I(µ1, . . . , µn, P ) = max H(p1, . . . , pn; µ1, . . . , µn)

s.t.
n∑

k=1

pk = P and pk ≥ 0 1 ≤ k ≤ n

for fixedµ1, . . . , µn. The optimisation in (1.3) is a convex programming problem which can be
completely characterised using the Karush-Kuhn-Tucker (KKT) conditions.

Using the optimality conditions from (1.3), we characterise the impact of the parameters
µ1, . . . , µn on the functionI(µ, P ). Interestingly, the functionI(µ, P ) is a Schur-convex func-
tion with respect to the parameter vectorµ = [µ1, . . . , µn], i.e. if µ1 majorizesµ2 thenI(µ1, P )
is larger thanI(µ2, P ) for arbitrary sum constraintP .

1A random variable is obviously positive, ifPr(wl < 0) = 0. Those variables are called positive throughout
the paper.
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ON SCHUR-CONVEXITY OF EXPECTATION OF WEIGHTED SUM OF RANDOM VARIABLES 3

The remainder of this paper is organised as follows. In the next, Section 2, we introduce the
notation and give definitions and formally state the problems. Next, in Section 3 we prove that
G(µ) is Schur-concave. The optimal solution of a convex programming problem in Section 4 is
then used to show thatI(µ, P ) is Schur-convex for allP > 0. The connection and applications
in wireless communications are pointed out in Section 6.

2. BASIC RESULTS, DEFINITIONS AND PROBLEM STATEMENT

First, we give the necessary definitions which will be used throughout the paper.

Definition 2.1. For two vectorsx,y ∈ Rn one says that the vectorx majorizes the vectory and
writes

x � y if
m∑

k=1

xk ≥
m∑

k=1

yk , m = 1, . . . , n− 1. and
n∑

k=1

xk =
n∑

k=1

yk.

The next definition describes a functionΦ which is applied to the vectorsx andy with x � y:

Definition 2.2. A real-valued functionΦ defined onA ⊂ Rn is said to beSchur-convexonA
if

x � y on A ⇒ Φ(x) ≥ Φ(y).

Similarly, Φ is said to beSchur-concaveonA if

x � y on A ⇒ Φ(x) ≤ Φ(y).

Remark 2.1. If the functionΦ(x) onA is Schur-convex, the function−Φ(x) is Schur-concave
onA.

Example 2.1. Suppose thatx,y ∈ Rn
+ are positive real numbers and the functionΦ is defined

as the sum of the quadratic components of the vectors, i.e.Φ2(x) =
∑n

k=1 |xk|2. Then, it is
easy to show that the functionΦ2 is Schur-concave onRn

+, i.e. if x � y ⇒ Φ2(x) ≤ Φ2(y).

The definition of Schur-convexity and Schur-concavity can be extended if another function
Ψ : R → R is applied toΦ(x). Assume thatΦ is Schur-concave, if the functionΨ is monotonic
increasing then the expressionΨ(Φ(x)) is Schur-concave, too. If we take for example the
function Ψ(n) = log(n) for n ∈ R+ and the functionΦp from the example above, we can
state that the composition of the two functionsΨ(Φp(x)) is Schur-concave onRn

+. This result
can be generalised for all possible compositions of monotonic increasing as well as decreasing
functions, and Schur-convex as well as Schur-concave functions. For further reading see [11].

We will need the following lemma (see [11, Theorem 3.A.4]) which is sometimes called
Schur’s condition. It provides an approach for testing whether some vector valued function is
Schur-convex or not.

Lemma 2.2. LetI ⊂ R be an open interval and letf : In → R be continuously differentiable.
Necessary and sufficient conditions forf to be Schur-convex onIn are

f is symmetric on In

and

(xi − xj)

(
∂f

∂xi

− ∂f

∂xj

)
≥ 0 for all 1 ≤ i, j ≤ n.

Sincef(x) is symmetric, Schur’s condition can be reduced as [11, p. 57]

(2.1) (x1 − x2)

(
∂f

∂x1

− ∂f

∂x2

)
≥ 0.
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4 HOLGER BOCHE AND EDUARD A. JORSWIECK

From Lemma 2.2, it follows thatf(x) is a Schur-concave function onIn if f(x) is symmetric
and

(2.2) (x1 − x2)

(
∂f

∂x1

− ∂f

∂x2

)
≤ 0.

Finally, we propose the concrete problem statements: At first, we are interested in the impact
of the vectorµ on the functionG(µ).

This problem is solved in Section 3.

Problem 1. Is the functionG(µ1, . . . , µn) in (1.2) a Schur-concave function, i.e. withµ1 =
[µ1

1, . . . , µ
1
n] andµ2 = [µ2

1, . . . , µ
2
n] it holds

µ1 � µ2 =⇒ G(µ1) ≤ G(µ2)?

Next, we need to solve the following optimisation problem in order to characterise the impact
of the vectorµ on the functionI(µ, P ).

We solve this problem in Section 4.

Problem 2. Solve the following optimisation problem

(2.3) I(µ1, . . . , µn, P ) = max H(p1, . . . , pn; µ1, . . . , µn)

s.t.
n∑

k=1

pk = P and pk ≥ 0 1 ≤ k ≤ n

for fixedµ1, . . . , µn.

Finally, we are interested in whether the function in (2.3) is Schur-convex or Schur-concave
with respect to the parametersµ1, . . . , µn. This leads to the last Problem statement 3.

This problem is solved in Section 5.

Problem 3. Is the functionI(µ, P ) in (2.3) a Schur-convex function, i.e. for allP > 0

µ1 � µ2 =⇒ I(µ1, P ) ≤ I(µ2, P )?

3. SCHUR-CONCAVITY OF G(µ)

In order to solve Problem 1, we consider first the functionf(x) = log(1 + x). This function
naturally arises in the information theoretic analysis of communication systems [14]. That
followed, we generalise the statement of the theorem for all concave functionsf(x). Therefore,
Theorem 3.1 can be seen as a corollary of Theorem 3.3.

Theorem 3.1.The function

(3.1) C1(µ) = C1(µ1, . . . , µn) = E

[
log

(
1 +

n∑
k=1

µkwk

)]
with iid positive random variablesw1, . . . , wn is a Schur-concave function with respect to the
parametersµ1, . . . , µn.

Proof. We will show that Schur’s condition (2.2) is fulfilled by the functionC1(µ) with µ =
[µ1, . . . , µn]. The first derivative ofC1(µ) with respect toµ1 andµ2 is given by

α1 =
∂C1

∂µ1

= E
[

w1

1 +
∑n

k=1 µkwk

]
(3.2)

α2 =
∂C1

∂µ2

= E
[

w2

1 +
∑n

k=1 µkwk

]
.(3.3)
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Sinceµ1 ≥ µ2 by definition, we have to show that

(3.4) E
[

w1 − w2

z + µ1w1 + µ2w2

]
≤ 0

with z = 1 +
∑n

k=3 µkwk. The expectation operator in (3.4) can be written as an-fold integral
over the probability density functionsp(w1), . . . , p(wn). In the following, we show that for all
z ≥ 0

(3.5)
∫ ∞

0

∫ ∞

0

g(w1, w2, z)p(w1)p(w2)dw1dw2 ≤ 0

with g(w1, w2, z) = w1−w2

z+µ1w1+µ2w2
. Rewrite the double integral in (3.5) as

(3.6)
∫ ∞

0

∫ ∞

0

g(w1, w2, z)p(w1)p(w2)dw1dw2

=

∫ ∞

w1=0

∫ w1

w2=0

(g(w1, w2, z) + g(w2, w1, z)) p(w1)p(w2)dw1dw2

because the random variablesw1 andw2 are independent identically distributed. In (3.6), we
split the area of integration into the area in whichw1 > w2 andw2 ≥ w1 and used the fact,
that g(w1, w2, z) for w1 > w2 is the same asg(w2, w1, z) for w2 ≥ w1. Now, the expression
g(w1, w2, z) + g(w2, w1, z) can be written for allz ≥ 0 as

g(w1, w2, z) + g(w2, w1, z) =
(w1 − w2)(µ1w2 + µ2w1 − µ1w1 − µ2w2)

(z + µ1w1 + µ2w2)(z + µ1w2 + µ2w1)

=
(w1 − w2)

2(µ2 − µ1)

(z + µ1w1 + µ2w2)(z + µ1w2 + µ2w1)
.(3.7)

From assumptionµ2 ≤ µ1 and (3.7) follows (3.5) and (3.4). �

Remark 3.2. Interestingly, Theorem 3.1 holds for all probability density functions which fulfill
p(x) = 0 for almost everyx < 0. The main precondition is that the random variablesw1 and
w2 are independent and identically distributed. This allows the representation in (3.6).

Theorem 3.1 answers Problem 1 only for a specific choice of functionf(x). We can gen-
eralise the statement of Theorem 3.1 in the following way. However, the most important, in
practice is the case in whichf(x) = log(1 + x).

Theorem 3.3. The functionG(µ) as defined in (1.2) is Schur-concave with respect toµ if the
random variablesw1, . . . , wn are positive identically independent distributed and if the inner
functionf(x) is monotonic increasing and concave.

Proof. Let us define the difference of the first derivatives off(
∑n

k=1 µkwk) with respect toµ1

andµ2 as

∆(w1, w2) =

(
∂f(
∑n

k=1 µkwk)

∂µ1

− ∂f(
∑n

k=1 µkwk)

∂µ2

)
.

Since the functionf is monotonic increasing and concave,f ′′(x) ≤ 0 andf ′(x) is monotonic
decreasing, i.e.

f ′(x1) ≤ f ′(x2) for all x1 ≥ x2

Note, thatw1 ≥ w2 andµ1 ≥ µ2 andµ1w2 + µ2w2 ≥ µ1w2 + µ2w1. Therefore, it holds

(w1 − w2)

(
f ′(µ1w1 + µ2w2 +

n∑
k=3

µkwk)− f ′(µ1w2 + µ2w1 +
n∑

k=3

µkwk)

)
≤ 0
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Using equation (3.6), it follows

(3.8)
∫ ∞

w1=0

∫ w1

w2=0

(∆(w1, w2)−∆(w2, w1)) p(w1)p(w2)dw1dw2 ≤ 0

because the densities are positive. This verifies Schur’s condition for (1.2). �

The condition in Theorem 3.3 can be easily checked. Consider for example the function

(3.9) k(x) =
x

1 + x
.

It is easily verified that the condition in Theorem 3.3 is fulfilled by (3.9). By application of
Theorem 3.3 it has been shown that the functionK(µ) defined as

K(µ) = E
[ ∑n

k=1 µkwk

1 +
∑n

k=1 µkwk

]
is Schur-concave with respect toµ1, . . . , µn.

4. OPTIMALITY CONDITIONS FOR CONVEX PROGRAMMING PROBLEM max H(µ,p)

Next, we consider the optimisation problem in (2.3) from Problem 2. Here, we restrict our
attention to the casef(x) = log(1 + x). The motivation for this section is to find a character-
isation of the optimalp which can be used to characterise the impact ofµ under the optimum
strategyp on H(µ,p). The results of this section, mainly the KKT optimality conditions are
used in the next section to show thatH(µ,p) with the optimalp∗(µ) is Schur-convex.

The objective function is given by

(4.1) C2(p, µ) = E

[
log

(
1 +

n∑
k=1

pkµkwk

)]

and the optimisation problem reads

(4.2) p∗ = arg max C2(p, µ) s.t.
n∑

k=1

pk = 1 and pk ≥ 0 1 ≤ k ≤ n.

The optimisation problem in (4.2) is a convex optimisation problem. Therefore, the Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient for the optimality of somep∗ [5].
The Lagrangian for the optimisation problem in (4.2) is given by

(4.3) L(p, λ1, . . . , λn, ν) = C2(p, µ) +
n∑

k=1

λkpk + ν

(
P −

n∑
k=1

pk

)

with the Lagrangian multiplierν for the sum constraint and the Lagrangian multipliersλ1, . . . , λn

for the positiveness ofp1, . . . , pn. The first derivative of (4.3) with respect topl is given by

(4.4)
dL
dpl

= E
[

µlwl

1 +
∑n

k=1 µkpkwk

]
+ λl − ν.
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The KKT conditions are given by

E
[

µlwl

1 +
∑n

k=1 µkpkwk

]
= ν − λl 1 ≤ l ≤ n,

ν ≥ 0,

λk ≥ 0 1 ≤ l ≤ n,

pk ≥ 0 1 ≤ l ≤ n,

P −
n∑

k=1

pk = 1.(4.5)

We define the following coefficients

(4.6) αk(p) =

∫ ∞

0

e−t

nT∏
l=1,l 6=k

1

1 + tplµl

· µk

(1 + tµkpk)2
dt.

These coefficients in (4.6) naturally arise in the first derivative of the Lagrangian of (4.2) and
directly correspond to the first KKT condition in (4.5) where we have used the fact that

E
[

wl

1 +
∑n

k=1 pkµkwk

]
= E

[
wl

∫ ∞

0

e−t(1+
∑n

k=1 pkµkwk)dt

]
.

Furthermore, we define the set of indices for whichpi > 0, i.e.

(4.7) I(p) = {k ∈ [1, . . . , nT ] : pk > 0}.

We have the following characterisation of the optimum pointp̂.

Theorem 4.1.A necessary and sufficient condition for the optimality ofp̂ is

{k1, k2 ∈ I(p̂) =⇒ αk1 = αk2 and

k 6∈ I(p̂) =⇒ αk ≤ max
l∈I(p̂)

αl}.(4.8)

This means that all indicesl which obtainpl greater than zero have the sameαl = maxl∈[1,...,nT ].
Furthermore, all otherαi are less than or equal toαl.

Proof. We name the optimal point̂p, i.e. from (4.2)

p̂ = arg max
||p||≤P,pi≥0

C(p, ρ, µ).

Let theµ1, . . . , µnT
be fixed. We define the parametrised point

p(τ) = (1− τ)p̂ + τp

with arbitraryp : ||p|| ≤ P, pi ≥ 0. The objective function is given by

(4.9) C(τ) = E log

(
1 + ρ

nT∑
l=1

p̂kµkwk + ρτ

nT∑
l=1

(pk − p̂k)µkwk

)
.

The first derivative of (4.9) at the pointτ = 0 is given by

dC(τ)

dτ

∣∣∣∣
τ=0

=

nT∑
k=1

(pk − p̂k)αk(p̂)
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with αk(p̂) defined in (4.6). It is easily shown that the second derivative ofC(τ) is always
smaller than zero for all0 ≤ τ ≤ 1. Hence, it suffices to show that the first derivative ofC(τ)
at the pointτ = 0 is less than or equal to zero, i.e.

(4.10)
nT∑
k=1

(pk − p̂k)αk(p̂) ≤ 0.

We split the proof into two parts. In the first part, we will show that the condition in (4.8) is
sufficient. We assume that (4.8) is fulfilled. We can rewrite the first derivative ofC(τ) at the
point τ = 0 as

Q =

nT∑
k=1

(p̂k − pk)αk(p̂k)

=

nT∑
k=1

p̂kαk(p̂)−
n∑

k=1

pkαk(p̂)

= max
k∈[1,...,nT ]

αk(p̂)
∑

l∈I(p̂)

p̂l −
nT∑
l=1

plαl(p̂).(4.11)

But we have that
nT∑
l=1

plαl(p̂) ≤
nT∑
l=1

pl max
k∈[1,...,nT ]

αl(p̂).

Therefore, it follows forQ in (4.11)

Q ≥ max
k∈[1,...,n]

αk(p̂)

∑
l∈I(p̂)

p̂l −
n∑

l=1

pl

 = 0,

i.e. (4.10) is satisfied.
In order to show that condition (4.8) is a necessary condition for the optimality of power

allocationp̂, we study two cases and prove them by contradiction.

(1) Assume (4.8) is not true. Then we have ak ∈ I(p̂) andk0 ∈ I(p̂) with the following
properties:

max
1≤k≤nT

αk(p̂) = αk0(p̂)

andαk(p̂) < αk0(p̂). We setp̃k0 = 1 andp̃i∈[1,...,nT ]k0 = 0. It follows that

nT∑
l=1

(p̂k − p̃k)αk(p̂) < 0

which is a contradiction.
(2) Assume there is ak0 : αk0 > αk with k0 6∈ I(p̂) andk ∈ I(p̂), then set̃pk0 = 1 and

õl∈[1,...,nT ]k0 = 0. Then we have the contradiction

nT∑
k=1

(p̂k − p̃k)αk < 0.

This completes the proof of Theorem 4.1. �
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5. SCHUR-CONVEXITY OF I(µ, P )

We use the results from the previous section to derive the Schur-convexity of the function
I(µ, P ) for all P > 0. The representation of theαk(p) in (4.6) is necessary to show that the
condition pl

µl
≥ pl+1

µl+1
is fulfilled for all 1 ≤ l ≤ n− 1. This condition is stronger than majoriza-

tion, i.e. it follows thatp � µ [11, Proposition 5.B.1]. Note that
∑n

k=1 pk =
∑n

k=1 µk = 1. The
result is summarised in the following theorem.

Theorem 5.1. For all P > 0, the functionI(µ, P ) is a Schur-convex function with respect to
the parametersµ1, . . . , µn.

Proof. The proof is constructed in the following way: At first, we consider two arbitrary pa-
rameter vectorsµ1 andµ2 which satisfyµ1 � µ2. Then we construct all possible linear combi-
nations ofµ1 andµ2, i.e. µ(θ) = θµ2 + (1 − θ)µ1. Next, we study the parametrised function
I(µ(θ)) as a function of the linear combination parameterθ. We show that the first derivative of
the parametrised capacity with respect toθ is less than or equal to zero for all0 ≤ θ ≤ 1. This
result holds for allµ1 andµ2. As a result, we have shown that the functionI(µ) is Schur-convex
with respect toµ.

With arbitraryµ1 andµ2 which satisfyµ1 � µ2, define the vector

µ(θ) = θµ2 + (1− θ)µ1(5.1)

for all 0 ≤ θ ≤ 1. The parameter vectorµ(θ) in (5.1) has the following properties which will
be used throughout the proof.

• The parametrisation in (5.1) is order preserving between the vectorsµ1 andµ2, i.e.

∀0 ≤ θ1 ≤ θ2 ≤ 1 : µ2 = µ(1) � µ(θ2) � µ(θ1) � µ(0) = µ1.

This directly follows from the definition of majorization. E.g. the first inequality is
obtained by

µ(θ2) = θ2µ
2 + (1− θ2)µ

1 ≥ θ2µ
2 + (1− θ2)µ

2 = µ2.

• The parametrisation in (5.1) is order preserving between the elements, i.e. for ordered
elements inµ1 andµ2, it follows that for the elements inµ(θ), for all 0 ≤ θ ≤ 1,

∀1 ≤ l ≤ nT − 1 : µl(θ) ≥ µl+1(θ).

This directly follows from the definition in (5.1).

The optimum power allocation is given byp1(θ), . . . , pn(θ). The parametrised objective func-
tion H(µ(θ),p(θ)) as a function of the parameterθ is then given by

H(θ) = E log

(
1 + ρ

n∑
k=1

µk(θ)pk(θ)wk

)

= E log

(
1 + ρ

n∑
k=1

(µ1
k + θ(µ2

k − µ1
k))pk(θ)wk

)
.(5.2)

The first derivative of (5.2) with respect toθ is given by

(5.3)
dH(θ)

dθ
= E

(∑n
k=1(µ

2
k − µ1

k)pk(θ)wk + dpk(θ)
dθ

(µ2
k + θ(µ1

k − µ2
k))

1 +
∑n

k=1(µ
2
k + θ(µ1

k − µ2
k))pk(θ)wk

)
.

Let us consider the second term in (5.3) first. Define

φk(θ) = (µ2
k + θ(µ1

k − µ2
k)) ∀k = 1, . . . , n.
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Then we have

(5.4)
n∑

k=1

dpk(θ)

dθ
E
(

φk(θ)wk

1 +
∑n

k=1 φk(θ)pk(θ)wk

)
=

n∑
k=1

dpk(θ)

dθ
αk(θ).

In order to show that (5.4) is equal to zero, we define the indexm for which holds

(5.5)
dpk(θ)

dθ
6= 0 ∀1 ≤ k ≤ m and

dpk(θ)

dθ
= 0 k ≥ m + 1.

We split the sum in (5.4) in two parts, i.e.

(5.6)
m∑

k=1

dpk(θ)

dθ
αk(θ) +

n∑
k=m+1

dpk(θ)

dθ
αk(θ).

For all1 ≤ k ≤ m we have from (5.5) three cases:

• First case:pm(θ) > 0 and obviouslyp1(θ) > 0, ..., pm−1(θ) > 0. It follows that

α1(θ) = α2(θ) = · · · = αm(θ)

• Second case: There exists anε1 > 0 such thatpm(θ) = 0 andpm(θ + ε) > 0 for all
0 < ε ≤ ε1. Therefore, it holds

(5.7) α1(θ + ε) = · · · = αm(θ + ε).

• Third case: There exists anε1 > 0 such thatpm(θ) = 0 andpm(θ − ε) > 0 for all
0 < ε ≤ ε1. Therefore, it holds

(5.8) α1(θ − ε) = · · · = αm(θ − ε).

Next, we use the fact that iff andg are two continuous functions defined on some closed
intervalO, f, g : O → R. Then the set of pointst ∈ O for which f(t) = g(t) is either empty
or closed.

Assume the case in (5.7). The set of pointsθ for which αk(θ) = α1(θ) is closed. Hence, it
holds

(5.9) αk(θ) = lim
ε→0

αk(θ + ε) = lim
ε→0

α1(θ + ε) = α1(θ).

For the case in (5.8), it holds

αk(θ) = lim
ε→0

αk(θ − ε) = lim
ε→0

α1(θ − ε) = α1(θ).

The consequence from (5.9) and (5) is that all activek with pk > 0 at pointθ and allk which
occur or vanish at this pointθ fulfill α1(θ) = α2(θ) = · · · = αm(θ). Therefore, the first addend
in (5.6) is

m∑
k=1

dpk(θ)

dθ
= α1(θ)

m∑
k=1

dpk(θ)

dθ
= 0.

The second addend in (5.6) is obviously equal to zero. We obtain for (5.3)

dH(θ)

dθ
= E

( ∑n
k=1(µ

2
k − µ1

k)pk(θ)wk

1 +
∑n

k=1(µ
2
k + θ(µ1

k − µ2
k))pk(θ)wk

)
.

We are going to show that

(5.10)
n∑

k=1

(µ2
k − µ1

k)E
(

pk(θ)wk

1 +
∑n

k=1(µ
2
k + θ(µ1

k − µ2
k))pk(θ)wk

)
≤ 0.
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We define

ak = µ1
k − µ2

k

sl =
l∑

k=1

ak

sn = 0

s0 = 0.

Therefore, it holds thatsk ≥ 0 for all 1 ≤ k ≤ n. We can reformulate (5.10) and obtain

(5.11)
n−1∑
l=1

sl(bl(θ)− bl+1(θ)) ≥ 0

with

bl(θ) = E
(

pl(θ)wl

1 +
∑n

k=1(µ
2
k + θ(µ1

k − µ2
k))pk(θ)wk

)
.

The inequality in (5.11) is fulfilled if

bl(θ) ≥ bl+1(θ).

The termbl in (5) is related toαl from (4.8) by

bl(θ) =
pl(θ)

µl(θ)
αl(θ).

As a result, we obtain the sufficient condition for the monotony of the parametrised function
H(θ)

(5.12)
pl(θ)

µl(θ)
≥ pl+1(θ)

µl+1(θ)
.

As mentioned above this is a stronger condition than that the vectorp majorizes the vectorµ.
From (5.12) it follows thatµ � p.

Finally, we show that the condition in (5.12) is always fulfilled by the optimump. In the
following, we omit the indexθ. The necessary and sufficient condition for the optimalp is that
for activepl > 0 andpl+1 > 0 it holds

αl − αl+1 = 0,

i.e.

(5.13)
∫ ∞

0

e−tf(t)
µl

1 + ρtµlpl

dt−
∫ ∞

0

e−tf(t)
µl+1

1 + ρtµl+1pl+1

dt = 0

with

f(t) =
n∏

k=1

1

1 + ρtµkpk

and
gl(t) = (1 + ρtµlpl)

−1(1 + ρtµl+1pl+1)
−1.

From (5.13) it follows that∫ ∞

0

e−tf(t)gl(t) (µl − µl+1 − (ρtµl+1µl)(pl − pl+1)) dt = 0.

This gives ∫ ∞

0

e−tf(t)gl(t)

(
µl − µl+1

pl − pl+1

1

ρµlµl+1

− t

)
dt = 0
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12 HOLGER BOCHE AND EDUARD A. JORSWIECK

and

(5.14)
µl − µl+1

pl − pl+1

1

ρµlµl+1

∫ ∞

0

e−tf(t)gl(t)dt−
∫ ∞

0

e−tf(t)gl(t)tdt = 0.

Note the following facts about the functionsf(t) andgl(t)

gl(t) ≥ 0 ∀ 0 ≤ t ≤ ∞ f(t) ≥ 0 ∀ 0 ≤ t ≤ ∞
dgl(t)

dt
≤ 0 ∀ 0 ≤ t ≤ ∞ df(t)

dt
≤ 0 ∀ 0 ≤ t ≤ ∞.(5.15)

By partial integration we obtain the following inequality

(5.16)
∫ ∞

0

f(t)gl(t)(1 − t)e−tdt =
(
f(t)gl(t)te

−t
)∞

t=0
−
∫ ∞

0

d(f(t)gl(t))

dt
te−tdt ≥ 0.

From (5.16) and the properties off(t) andgl(t) in (5.15) follows that∫ ∞

0

e−tf(t)gl(t)dt ≥
∫ ∞

0

te−tf(t)gl(t)dt.

Now we can lower bound the equality in (5.14) by

0 =
µl − µl+1

pl − pl+1

1

ρµlµl+1

∫ ∞

0

e−tf(t)gl(t)dt−
∫ ∞

0

e−tf(t)gl(t)tdt

≥ µl − µl+1

pl − pl+1

1

ρµlµl+1

− 1.(5.17)

From (5.17) it follows that

1 ≥ µl − µl+1

pl − pl+1

1

ρµlµl+1

and further on

(5.18) µl − µl+1 ≤ (pl − pl+1)ρµlµl+1.

From (5.18) we have
µl(1− ρµl+1pl) ≤ µl+1(1− ρµlpl+1)

and finally

(5.19) ρµl+1pl ≥ ρµlpl+1.

From (5.19) follows the inequality in (5.12). This result holds for allµ1 andµ2 with
∑n

k=1 µ1
k =∑n

k=1 µ2
k = 1. As a result,I(µ) is a Schur-convex function ofµ. This completes the proof.�

6. APPLICATION AND CONNECTION TO W IRELESS COMMUNICATION THEORY

As mentioned in the introduction, the three problem statements have an application in the
analysis of the maximum amount of information which can be transmitted over a wireless vec-
tor channel. Recently, the improvement of the performance and capacity of wireless systems
employing multiple transmit and/or receive antennae was pointed out in [15, 6]. Three scenarios
are practical relevant: The case when the transmitter has no channel state information (CSI), the
case in which the transmitter knows the correlation (covariance feedback), and the case where
the transmitter has perfect CSI. These cases lead to three different equations for the average
mutual information. Using the results from this paper, we completely characterize the impact
of correlation on the performance of multiple antenna systems.

We say, that a channel is more correlated than another channel, if the vector of ordered
eigenvalues of the correlation matrix majorizes the other vector of ordered eigenvalues. The

J. Inequal. Pure and Appl. Math., 5(2) Art. 46, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON SCHUR-CONVEXITY OF EXPECTATION OF WEIGHTED SUM OF RANDOM VARIABLES 13

average mutual information of a so called wireless multiple-input single-output (MISO) system
with nT transmit antennae and one receive antenna is given by

(6.1) CnoCSI(µ1, . . . , µnT
, ρ) = E log2

(
1 + ρ

nT∑
k=1

µkwk

)
with signal to noise ratio (SNR)ρ and transmit antenna correlation matrixRT which has the
eigenvaluesµ1, . . . , µnT

and iid standard exponential random variablesw1, . . . , wnT
. In this

scenario it is assumed that the receiver has perfect channel state information (CSI) while the
transmit antenna array has no CSI. The transmission strategy that leads to the mutual informa-
tion in (6.1) is Gaussian codebook with equal power allocation, i.e. the transmit covariance
matrix S = ExxH , with transmit vectorsx that is complex standard normal distributed with
covariance matrixS, is the normalised identity matrix, i.e.S = 1

nT
I.

The ergodic capacity in (6.1) directly corresponds toC1 in (3.1). Applying Theorem 3.1,
the impact of correlation can be completely characterized. The average mutual information is a
Schur-concave function, i.e. correlation always decreases the average mutual information. See
[2] for an application of the results from Theorem 3.1. If the transmitter has perfect CSI, the
ergodic capacity is given by

CpCSI(µ1, ..., µn, ρ) = E log2

(
1 + ρ

n∑
k=1

µkwk

)
.

This expression is a scaled version of (6.1). Therefore, the same analysis can be applied.
If the transmit antenna array has partial CSI in terms of long-term statistics of the channel,

i.e. the transmit correlation matrixRT , this can be used to adaptively change the transmission
strategy according toµ1, . . . , µnT

. The transmit array performs adaptive power controlp(µ)
and it can be shown that the ergodic capacity is given by the following optimisation problem

(6.2) CcvCSI(µ1, . . . , µnT
, ρ) = max

||p||=1
E log2

(
1 + ρ

nT∑
k=1

pkµkwk

)
.

The expression for the ergodic capacity of the MISO system with partial CSI in (6.2) directly
corresponds toC2 in (4.1). Finally, the impact of the transmit correlation on the ergodic capacity
in (6.2) leads to Problem 3, i.e. to the result in Theorem 5.1. In [10], Theorem 4.1 and 5.1 have
been applied. Interestingly, the behavior of the ergodic capacity in (6.2) is the other way round:
it is a Schur-convex function with respect toµ, i.e. correlation increases the ergodic capacity.

7. NOTE ADDED IN PROOF

After submission of this paper, we found that the cumulative distribution function (cdf) of
the sum of weighted exponential random variables in (1.1) has not the same clear behavior
in terms of Schur-concavity like the function (3.1). In [3], we proved that the cdfF (x) =
Pr[
∑n

k=1 µkwk ≤ x] is Schur-convex for allx ≤ 1 and Schur-concave for allx ≥ 2. Further-
more, the behavior ofF (x) between1 and2 is completely characterized: For1 ≤ x < 2, there
are at most two global minima which are obtained forµ1 = ... = µk = 1

k
andµk+1 = ... =

µn = 0 for a certaink. This result verifies the conjecture by Telatar in [15].
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