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ABSTRACT. The main aim of this paper is to investigate the integral of the weighted maximal
function of the Walsh-Kaczmarz-Fejér kernels. We give a necessary and sufficient conditions
for that the weighted maximal function of the Walsh-Kaczmarz-Fejér kerneldis.iAfter this

we discuss the weighted maximal function(6f, «) kernels with respect to Walsh-Paley system
too.
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1. INTRODUCTION AND PRELIMINARIES

The Walsh-Kaczmarz system was introduced in 1948 by Snéitler [9]. He showed that the
behavior of the Dirichlet kernel of the Walsh-Kaczmarz system is worse than of the kernel of
the Walsh-Paley system. Namely, he showed in [9] that the inequialityup % >C>0
holds a.e. for the Dirichlet kernel with respect to the Walsh-Kaczmarz system. This allows us
to construct examples of divergent Fourier series [2].

On the other hand, Schipp![6] and Wo-Sang Yound [10] proved that the Walsh-Kaczmarz
system is a convergence system. Skvorcov [8] verified the everywhere and uniform convergence
of the Fejér means for continous functions. Gat proved [4] that the Fejér-Lebesgue theorem
holds for the Walsh-Kaczmarz system.

It is easy to show that the' norm ofsup,, | D,,| with respect to both systems is infinite. Gat
in [3] raised the following problem: "What happens if we apply some weight funetidithat

is, on what conditions do we find the inequality
D,
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to be valid?" He gave necessary and sufficient conditions for both rearrangements of the Walsh
system. The main aim of this paper to give necessary and sufficient conditions for the maximal
function of Fejér kernels with weight functianfor both rearrangements.

First we give a brief introduction to the theory of dyadic analysis [7, 1].

Denote byZ, the discrete cyclic group of order 2, thatds = {0, 1}, the group operation
is modulo2 addition and every subset is open. The normalized Haar meas#gismiven in
the way that the measure of a singleton /8, that is,.({0}) = u({1}) = 1/2. Let

G = o)? ZQ,
k=0

G is called the Walsh group. The elements@fcan be represented by a sequence-
(xo,x1,. .., Tk, ... ), Wherex, € {0,1} (k € N) (N :={0,1,...},P:=N\{0}).

The group operation o6 is coordinate-wise addition (denoted ¥y, the measure (denoted
by 1) and the topology are the product measure and topology. Consequemslyg compact
Abelian group. Dyadic intervals are defined by

Iy(z) =G, I,(x)={yeG:y= (20, Tn-1,YnsYns1---)}
for x € G,n € P. They form a base for the neighborhoods’bfLet0 = (0: i € N) € G and
I, .= I,(0) forn € N.
Furthermore, leL?(G) denote the usual Lebesgue space&dwith the corresponding norm
| - [|). The Rademacher functions are defined as
rp(z) = (=1)" (z € G,keN).

Each natural numbert can be uniquely expressedmas= >_°,n;2", n; € {0,1} (i € N),
where only a finite number of;’s are different from zero. Let the order of> 0 be denoted
by |n| := max{j € N : n; # 0}. That is,|n| is the integer part of the binary logarithm of

Define the Walsh-Paley functions by

()
[n|

wn(w) = [T oru(a)) = (=)=,

k=0
Let the Walsh-Kaczmarz functions be defineddgy= 1 and forn > 1
In|—1

tin(2) = 1y (2) [T (rageas)™ = P () (= 1) K20 42ini-1n

k=0
The Walsh-Paley systemds:= (w,, : n € IN) and the Walsh-Kaczmarz systemsis= (x,, :
n € N). Itis well known that

{kp:2F<n <2} ={w,: 2" <n < 2"}

forall £ € N andkg = wy.
A relation between Walsh-Kaczmarz functions and Walsh-Paley functions was given by
Skvorcov in the following way [8]. Let the transformatien : G — G be defined by

Ta(T) == (TA_1,TA 2, .., T1, 00, TA, TALL, - )
for A € N. We have that
(@) = 7| (T)wy ol (T (z))  (n € N,z € G).
Define the Dirichlet and Fejér kernels by

n—1 n
D? ::Zgbk, K¢ = EZD;?,
k=0 n k=1
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whereg,, = w, or k, (n € P). DY, KJ := 0.

It is known [7] that
2" x el
D n — Y ns
2 (@) {O, otherwise(n € N).

Leta, 5 : [0,00) — [1,00) be monotone increasing functions and define the weighted maxi-
mal function of the Dirichlet kernel®?* and of the Fejér kernels’®*:

¢
|D ( )| K¢’*(x) sup |K¢( )‘ ($€G),
neN a([logn])’ * neN a([logn])
whereg¢ is either the Walsh-Paley, or the Walsh-Kaczmarz system. For the the weighted maxi-
mal function of the Dirichlet kernels with respect to the Walsh-Paley sysigimGat [3] proved
thatDe* e L' ifand only if )% - ) < oo. Moreover, he proved that

o0

1 1

-y — <D <2y ——

QZQ(A)—H oIl = ZQ(A)
A=0 A=0

For the Walsh- Kaczmarz system, he showed that the situation is changed, a{riedy " if
and only if} 7" | £ < oco. Moreover, he proved that there exists a positive congiastich
that

D%*(x) := sup

«

I < A
RIS _C.
||Da Hl = 95 A§:1 CY(A) C

The two conditions are quite different for the two rearrangements of the Walsh system.

2. THE RESULTS
For || K¥*[|1, we immediately obtain from Gat'’s result the following lemma:

Lemma2.1. Ky € L' ifand only if )20 oi5

I 1 =1
_ < va* <2 -
42:&(14)_” o ||1_ ZO&A
A=0 A=0
Proof. The upper estimation follows trivially from

K2 ()] |Dw .
o) =7 >0 Z (@)

j=1

< 0o. Moreover,

that is
K&*(x) < D2*(x) (2 €G).
The lower estimation fop = w or k comes from the following. On the sét\ /4., we have

24
1 2A+1
¢ (x) =
K2A _AZ
k=
Thus, we have
. - K¢A(9‘7)
K=Y [ K@@ =Y [
AZO Ia\lat+1 Az% Ia\Ia41 a(A)
=1 24 +1 1< 1
Pl e
A=0 a( ) Ta\Ia41 2 4A:0 a( )
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We will show that we can obtain as good an estimation|ff&r*||, as for| K< *||;. This
means that the behavior of the Walsh-Kaczmarz-Fejér kernels is better than the behavior of the
Walsh-Kaczmarz-Dirichlet kernels. This is the main reason, why we have so many convergence
theorems for Walsh-Kaczmarz-Fejér means [4, 8]. Namely,

Theorem 2.2. There is positive absolute constaritsuch that

o0

1 1 =1
Z < Rkl < I
42(1(14) = HKa ||1_C;Q(A)

A=0
Corollary 2.3. K5* € L' ifand only if32°7 ; -i55 < cc.
Skvorcov in [8] proved that fon € P, x € G

In|—1 In|—1

nK"(z —1+Z2D2L +Z2Zm K% (i(z))

+ (1= 2" (Dygiat () + 7y (2) Kyt (7 ().
To prove Theorerp 212, we will use two lemmas by Gat [4].

Lemma2.4.LetA,t € N, A > t. Suppose that € I,\I,,,. Then

0 if o —xe & 14,
2u(x) = |
2= if oz — xpep € 4.
If ¢ € 14, thenK¥, (z) = 252,

2
Set
a+b—1

szb. ZDM (a,bGN),

andn(® := > n,;2" (n,s € N). Usmg S|mple calculations, we have
In|

nK;y = ZnsKﬁwl),gs +Dy  (neP).
s=0

Lemma 2.5. Lets, t,n € N, andx € I)\I;;. If s <t < |n|, then|K¥, 2S( x)| < 25T I
t < s <|nl, then we have

0 ifx—.%'tet&']s,
Kw(8+1)725 (x) =

n

Wy ()27 if o — 34y € I,

Throughout the remainder of the pagewill denote a positive absolute constant, though not
always the same at different occurences.

Proof of the Theorefn 2.20Me will use Skvorcov’s result and

1 [n|—1 1
na(]n] ‘n| Z 2! DQl na(|n|) (n— Q‘nI)DQ\n\(x)

1

o) " 22 o)

1
w,* < w,* .
+ D& (x) < _a(l) + CDe*(x)

<
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Now, we discuss
In|—1

m Z 2im(x)K§‘i- (1:(x)).

LetJ ={r€G:x;1=--=w,4=0,7,41=1}andJ, .= {x € G: 2, = 1}. For
everyl < ¢ € N we can decomposg as the disjoint unionG := I; U Uf;(l) Jl.

By Gat's Lemma 24, if: € J;, thenKy (r;(x)) # 0 only in the case whem;_,_, = --- =
zo = 0, and in this caséy; (1;(z)) = 2.

| o) 5 ()t /K 2)du(z) + /KW(())du(x)

20+ 1

< 21+2 /gKé‘i(n(x))du(:v)

i—1

< 1+Z/{ 2" Ldp()

=0 z€Gwi_y_1=1,2;=01if j<iandj#i—t—1}
i—1

t—1

Thus, we have

1 = /
< 2 ri(x)KS (T dp
ia(g) 2 GI (2) K5i(7i()) |dp(z)
0o 1 q—1 0o 1
< 21+1 < C -
q:ZO 290 (q) < ; a(q)
We have to discuss
n — 2"
n Kw n n .
Slip ’I’LOZ(|n|)T| |<£C> n—2I \<T| (:C)>‘
n — 2" y
[ s | @ (7)) dia)
¢ n |na(|n])
=1 / n — 2"
< —— [ sup KY . (Tin du(x
;a(l) Glnl=l T ot ()]
=1 n — 2"
- Z_l/ Sup Kyt (7o) ()] dpa()
— o) Jyp= 1
=1 / n — 2"
+ —— [ sup K2 (T du(x
;0&([) T Inl=t n —oln|\7] | ‘
=: St 4+ 52
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If v € ]‘n| thenTw( ) S ]|n‘ and‘K 2\"\<T|”\(x))’ < C(TL — 2'”') and

— 9Inl)2
St < C’Z sup (n ) du(x)

I, |n|=l n

C’Z sup(n — 2" du(z)

Iy In]=l
|
gczm/llﬁdmx)gczm.

Now, we investigates?.

00 1 n — 2‘”‘ w
S? < Z m / sup  sup ‘Kn—QW Ty (2 ‘d,u

n|= L n— 2nl|]=g T

=1 t=0 <
00 1 -1 1 q
< Z— / sup Sup —Zns K ZS(T\n\(JT))‘d/L(iU)
— o
+ sup  sup DY o (T du(x
202 Z i Dy (@)
=Y
K D
Letz € J!. By Lemm of Gat, ifs < ¢, then‘K (41 23( In |(:c))‘ < 25t if g > s >
t, then K1) o (T (2)) 7é oOifand only if ;o = --- = x4 = 0, and in this case
)Kn(sﬂ (T (2 ’ =2
[e%S) 1 -1 l
DEID ST B ST BE = B SCHEIEYE
K =1 all) = |”| l 2+
[e'e) 1 -1 t 1 q
NI EDY / 2 ()
I=1 a(l) t=0 ¢=0 2+ s=0 7 i
0 1 -1 -1 1 t
HOY G Y g [, 2
=1 o(l) t=0 gq=t+1 2! 421 T
00 1 -1 -1
rey Yy Sy / 2 du(a)
=1 a(l) t=0 g=t+1 2+ s—t+1 /{z€J i o= =x;_s=0}
[ee) -1 t q o) -1
1 1 2t( l— t)
<oy ey
- l
=1 Oé(l) t=0 ¢=0 2 + 24 s=0 =1 Oé l t=0
%) -1
1 20(1 —t)?
C
- Za(l) ol
=1 t=0
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=1
SC;W)'

The mequallty‘ an‘(nn‘(x))‘ < n -2 gives

-1

<01 — 9ln|
Z Z— /sup sup n dp(x)
a(l) J n
D t=

= l|n| un 2Inl|=g

The lower estimation comes from Leminal2.1.
This completes the proof of Theor¢gm|2.2. O

Let o € R, and define theith (C, o) Fejér kernelK¢> and the weighted maximal function
of the (C, a) Fejér kernels< ;™" by

Ko
Koo :_ Ac—Lp? e |—
e g L AR K :z£5<[1ognn

whereg = w or k and A2 := 1190119 for anyp € N a € R(a # —1,-2,...). Itis known
that A® ~ n®.

To investigateK;;”“’*, we have to use the following lemma of Gat and Goginava [5]:
Lemma 2.6(G. Gat, U. Goginava)Leta € (0,1) andn := n = n 24 + - .- 4+ ny2°, then

2P —1

|Kwa|< Z Zzpa 1) Z ’Kw|+2za|KL 1|+22aD21

j=2r-1

Theorem 2.7.Let0 < a < 1, then there are positive absolute constanis (¢, C' depend only

on «) such that
= 1 = 1
c - < Kw,oz,* < C -
2. 5y < 1™ = C 2 5

This means that the behavior of the weighted maximal function of¢he) kernels is the
same as the behavior of the weighted maximal function ofdhé ) kernels with respect to this
issue.

Corollary 2.8. K7*" € L*ifand only if}>7 ﬁ < oo.

Proof. a = 1 is given by Lemma 2]1.
Let|n| = A. Then by Lemm6 of Gat and Goginava we have

2P—1
|Kw,a| O 1
n S 2pa KW +27«OCKZ +2ZQD’L
st S B e
Cla) < | < = |KY K2 | . Dy
< gp(a—1) _|_2zoz 211 gia 2
= Z 27 2 Sy a0 )

< C(a)(K5™ + D5,
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This, Lemm and[3] of Gét gives that the upper estimation hold& fgt".

To make the lower estimation we need to investig&fé”, where¢ = w or k.
On the sefl 4\ 144, We have

24 24 24
DA DI () =D Agt =) AR ).
j=0 §=0 1=0
Therefore by an Abel transformation add ;' = A7~ &t < AP~! it follows that
24 242 l 24-1
DAY -0 = Y (AT = AT D (2 =)+ A5, Y2t =)
1=0 1=0 j=1 I=1
241
a— oa— 2A(2A — 1)
>A2A11;(2A—Z)=A2A11 >0
and
¢ 1 - 1 o 1 1 2A(2A_1)
K () Ao ZAgA—jDJ (z) > Ao Agi 5
24 =0 2A
Thus,
IKE =Y [ K @duta)
A=0 Y IaN\lat1
> / (Kff(x)‘d @)
> ——du(x
2 fininn B
=1 / 1., 24024 -1)
> Al ———dp(z)
1;) p(4) Ta\Ia41 A 2 2
= 1
S
2 B(A)
This completes the proof of Theor¢gm[2.7. O
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