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ABSTRACT. Ebrahim and Pellery [7] and Ebrahiiml [4] proposed the Shannon residual entropy
function as a dynamic measure of uncertainty. In this paper we introduce and study a generalized
information measure for residual lifetime distributions. It is shown that the proposed measure
uniguely determines the distribution function. Also, characterization results for some lifetime
distributions are discussed. Some discrete distribution results are also addressed.
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1. INTRODUCTION

Let X be an absolutely continuous non-negative variable describing the random lifetime of a
component. Lelf(z) be the probability density functiorf;(z) be the cumulative distribution
andR(z) be the survival function of the random variable A classical measure of uncertainty
for X is the differential entropy, also known as the Shannon information measure, defined as

(1.1) H(X)=- /000 f(x)log f(z)dx.

If X is a discrete random variable taking values z., ..., z,, with respective probabilities
P1, P2, ---, Pn, then Shannon’s entropy is defined as

(1.2) H(P) = H(py,p2, s pn) = — > i log(pr).
k=1
Renyi [11] generalized (1.1) and defined the measure
1 <
(1.3) H,(X)= mlog/0 fYz)de, a>1

174-09


mailto:baigmak@yahoo.co.in
mailto:javinfo.stat@yahoo.co.in
http://www.ams.org/msc/

2 M.A.K. BAIG AND JAVID GANI DAR

and in the discrete case

(1.4) Ho(X) = ﬁlog ;pg, a1

Furthermore, in the continous case

(L5) liy 1,(X) = = [ fla)log f(a)de = H(X)

and in discrete case

(1.6) lim Ho(X) = = prlog(pr) = H(P),
k=1

which is Shannon’s entropy in both cases.

The role of differential entropy as a measure of uncertainty in residual lifetime distributions
has attracted increasing attention in recent years. As stated by Ebriahimi[4], the residual entropy
atatimet of arandom life timeX is defined as the differential entropy(©f/X > ¢). Formally,
for all ¢t > 0, the residual entropy oX is given by

[T f@), fx)
a.7) H(X;t) = /t R®) log R®) dx
or

1 oo
H(X;t)=1- %/t f(z)log h(z)dz,

whereh(t) = % is the hazard function or failure rate of the random variableGiven that
an item has survived up 1 H(.X; t) measures the uncertainty of the remaining lifetime of the
component.

In the case of a discrete random variable, we have

o= e

k=j

whereR(t) is the reliability function of the random variabJe.

Nair and Rajesh |9] studied the characterization of lifetime distributions by using the resid-
ual entropy function corresponding to the Shannon’s entropy. In this sequel, we investigate
the problem of the characterization of a lifetime distribution using the following generalized
residual entropy function:

(1.9) H.(X;t) = a(11—@) log (ft é:((g)dx) L oa>1

Asa — 1, (1.9) reduces td (I.7).
The measurg (1].9) is the residual life entropy correspondirjg ip (1.3).

2. CHARACTERIZATION OF DISTRIBUTIONS

2.1. Continuous Case.Let X be a continuous non-negative random variable representing
component failure time with failure distributiof'(t) = P(X < t) and survival function
R(t) =1 — F(t) with R(0) = 1. We define the generalized entropy for residual life as

Loofa(x)dx
ww ) o

(2.1) H,(X;t) = ol 1_ ) log <

J. Inequal. Pure and Appl. Mathl0(3) (2009), Art. 84, 8 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A GENERALIZED RESIDUAL INFORMATION MEASURE AND ITSPROPERTIES 3

and so

(2.2) /too f¥(x)dx = R*(t)exp (a(1l — a)Ho(X5t)), a> 1.

We now show that{,(X; t) uniquely determine®(t).

Theorem 2.1.1f X has an absolutely continuous distributiditt) with reliability functionR(t)
and an increasing residual entrogy,, (X; ¢), thenH,(X;¢) uniquely determine&(¢).

Proof. Differentiating [2.2) with respect tg we have
(2.3) h(t) = ah(t)exp (a(l — a)H,(X; 1))
— (@)1 —a)exp (a(l — a)Ha(X;t)) Hy (X 1),

whereh(t) = £ is the failure rate function.
Hence for a fixed > 0, h(t) is a solution of

(2.4) g(x) = (2)* — azexp (a(l — a)Ha(X;1))

+a(l —a)exp (a(l — a)Ho(X;t)) HL(X;t) = 0.
Differentiating both sides with respectigwe have
(2.5) g'(x) = a(x)* — avexp (a1 — ) Ho(X ;1)) -

Now fora > 1, ¢(0) <0, g(oo0) = oo, g(z) first decreases and then increases with minimum
atx; = exp (—aH,(X;t)).

So, the unique solution tg(x) = 0 is given byxz = h(t). ThusH,(X;t) determinesh(t)
uniquely and hence determin&st) uniquely. O

Theorem 2.2. The uniform distribution ovefa, b), a < b can be characterized by a decreasing
generalized residual entropl/,,(X;t) = X log(b—1t), b > t.

Proof. For the case of uniform distribution ovér, b), a < b, we have
1
(2.6) H,(X;t) = o log(b —t), b>t
which is decreasing in
Also, z; = exp (—aH,(X;t)), therefore,
g(xy) = (24)* — axpexp (a(l — a)Hy (X;t)) + a(l — a) exp (a(l — a)Ho (X ;1)) HL(X; 1)
=0.

HenceH,(X;t) = log(b — t) is the unique solution tg(x;) = 0, which proves the theorem.
0

Theorem 2.3.Let X be a random variable having a generalized residual entropy of the form

1
(2.7) H,(X;t) = logk — —log h(t),
a

a(l —a)
whereh(t) is the failure rate function oK. ThenX has
(i) an exponential distribution iff = 1,
(ii) a Pareto distribution iffc < i and
(i) afinite range distribution iff: > é
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Proof. (i) Let X have the exponential distribution,

(1) :%exp (_ (g)) £50, 0> 0.

The reliability function is given by
t
R(t) = exp <—5)

1
Therefore, after simplification, using (2.1),

and the failure rate function by

1
(2.8) H,(X;t) = logk — o log h(t),

a(l —a)

wherek = X andh(t) = ;.
Thus [2.7) holds.
Conversely, suppose that= é then

1 1 S o (@)da
Ing_EIOgh(t):a(l—a)IOg( Ra ) ), a>1

a(l — a)
which gives,

(2.9) h(t) = (kl(a__kj‘)w h(10))_ = (at+b)",

wherea = kl(;fol‘)) =0, sincek = = andb = ﬁ
Clearly ) is the failure rate function of the exponential distribution.

(i) The density function of the Pareto distribution is given by

1

b)a
tzﬁ, t>0,a>0,0>0.
at +0b) e
The reliability function is given by
(b)«
t)=——— t>0,a>0,b>
R ( ) 0 0,0>0
at +b)e

and failure rate is given by
(2.10) h(t) = (at +b)"".
After simplification, (2.1) yields

1
(2.12) H,(X;t) = log k — —log h(t),
«

a(l —a)

_ 1 1 o _ -1
wherek = —— < 2, sincea > 1 andh(t) = (at +b) .

Thus [Z7) holds.
Conversely, suppose thiat< 1. Proceeding as in (i)} (2.9) gives

(2.12) h(t) = (kl(a_—kof)H h(10)>_ = (at +b)"",

wherea = (,&;—%) > 0, sincek < X, o > 1andb = ﬁ
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Clearly, [2.12) is the failure rate function of the Pareto distribution givep in(2.10).
(iif) The density function of the finite range distribution is given by

fiy ="

The reliability function is given by

t ﬁl*l
(1——) , 1 >0,0<t<v<oo.
v

B1
t

R(t):<1——) , 01>0,0<t<v<o
v

and the failure rate function by

(2.13) h(t) = <%> (1 _ é) o

It follows that

1 1
)= —— loghk — =1
Ha<X7t> Oé(l—Oé) ng o Ogh(t)a
. —1
wherek = 2L > 1 sincea > 1 andh(t) = (2) (1- %)™ .
Thus [2.7) holds.
Conversely, suppose > i Proceeding as in (i).9) gives
ka —1 -1
2.14 h(t) =h 1——h(0)t
219 (0 =n0) (1= o= 5h00)
which is the failure rate function of the distribution given by (2.13); it L. O

2.2. Discrete Case.Let X be a discrete random variable taking valugsz,, ..., x,, with re-
spective probabilitieg,, ps, ..., p,. The discrete residual entropy is defined as

. & Pk Pk
2.15 H(p;j) = — —lo ~ .
(219 (i) = =2 gy o8 ()
The generalized residual entropy for the discrete case is defined as
. 1 - Dk )a
2.16 H,(p;j) = ——— 1o =) .
(2.16) #:d) = S g’; (R(;)

Fora — 1, (2.18) reduces t¢ (2.15).

Theorem 2.4.1f X has a discrete distributior(¢) with support(t; : ¢; < t;41) and an in-
creasing generalized residual entrop, (X; t) then H,(X; ) uniquely determines’(t).

Proof. We have

Hu(p; j) = ﬁlogg (é@))a

and so

@17 >0k = B) e (a1 — o) o).
Forj + 1, we have -

(2.18) S = BG4 D exp (01— ) Halprj £ 1))

k=j+1
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Subtracting|(2.18) fron (2.17), using = R(j) — R(j + 1) and); = 45, we have

exp (a(l —a)Ha(p; j)) = (1= Aj)" + ()% exp (a(1 — a)Ha(p; j + 1)) -
Hence,)\; is a number in0, 1) which is a solution of
(219)  é(2) = exp (a(l — a)Ha(p; ) — (1 — )" — () exp (a1 — @) Ha(p;j +1).
Differentiating both sides with respecttowe have
(2.20) ¢'(x) = a(l =) — a(x)* " exp (a(l — a)Ha(p; j + 1))
Note thaty’(z) = 0 gives

v =[1+exp(—aHu(p;j+ 1)) = ;.

Now fora > 1, ¢(0) < 0 andg(1) < 0, ¢(x) firstincreases and then decrease®in ) with a
maximum atr; = [1 + exp (—aH,(p;j + 1)) "

So the unique solution to(z) = 0 is given byz = z;.
ThusH,(X;t) uniquely determines’(¢). O

Theorem 2.5. A discrete uniform distribution with suppoft, 2, ..., n) is characterized by the
decreasing generalized discrete residual entropy

1
Hu(p;j) = Elog(n —j+1), j=12.,n.
Proof. In the case of a discrete uniform distribution with supgare, ..., n),

, 1 . .
H.(p;j) = alog(n —Jj+1), j=12,...,n

which is decreasing in.

Also,
vy = [1+exp(—aHa(p;j+1))]
Therefore,
¢(z;) = exp (a(l — ) Ha(p; 7)) — (1 — ;)" — ()% exp (a1 — o) Ha(p; j + 1))
=0
which proves the theorem. O

3. ANEW CLASS OF LIFE TIME DISTRIBUTION

Ebrahimi [4] defined two nonparametric classes of distribution based on the méas\ire)
as follows:

Definition 3.1. A random variableX is said to have decreasing (increasing) uncertainty in
residual life DURL (IURL) if H(X; t) is decreasing (increasing) irn> 0.

Definition 3.2. A non-negative random variabl€ is said to have decreasing (increasing) uncer-
tainty in a generalized residual entropy of ordeDUGRL(IUGRL) if H,(X;t) is decreasing
(increasing) irt, ¢t > 0.

This implies that the random variabk has DUGRL(IUGRL),
H,(X;t) <0,
H!(X;t) > 0.

Now we present a relationship between the new classes and the decreasing(increasing) failure
rate class of lifetime distributions.
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Remark 1. R is said to be an IFR(DFR) #i(¢) is increasing(decreasing) in

Theorem 3.1.If R has an increasing(decreasing) failure rate, IFR(DFR) then it is also a
DUGRL(IUGRL).

Proof. We have,
1

(3.1) HY,(X:t) = == [h(t) = h*(0) exp (~a(l = a) Ha(X:1))]
—
SinceR is IFR, by [3.1) and RemafK 1, we have
H,(X;t) <0,
which means that{,(X;t) is decreasing irt, i.e, R is DUGRL. The proof for [IUGRL is
similar. O

Theorem 3.2.If a distribution is DUGRL as well as IUGRL for some constant, then it must be
exponential.

Proof. Since the random variablg is both DUGRL and IUGRL, then,
H,(X;t) = constant
Differentiating both sides with respecttowe get
h(t) = constant
which means that the distribution is exponential. O

The following lemma which gives the value of the functifiy (X; ¢) under linear transfor-
mation will be used in proving the upcoming theorem.

Lemma 3.3. For any absolutely continuous random variablg defineZ = ax + b, where
a > 0,b > 0 are constants, then

(07

Ho(Z:1) = 989 | pp (X; ﬂ) .
a

Proof. We have H,(X;t) from (2.1) andZ = ax + b, therefore,

Ho(Z;1) = loga o (X; ﬂ) ,
a

(07

which proves the lemma. O

Theorem 3.4.Let X be an absolutely continuous random variable 2hd DUGRL(IUGRL).
DefineZ = aX + b, wherea > 0 andb > 0 are constants, thed €¢ DUGRL(IUGRL).

Proof. SinceX € DUGRL(IUGRL), then,
H,(X;t) <0,
H,(X;t) > 0.

By applying Lemma 3]3, it follows thaf € DUGRL(IUGRL), which proves the theorem.
O

The next theorem gives upper(lower) bounds for the failure rate function.
Theorem 3.5.1f X is DUGRL(IUGRL), then
h(t) > (<) ()" exp (—aHu(X;t)).
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Proof. If X is DUGRL, then

H(X;t) <0
which gives,
(3:2) h(t) > ()77 exp (—aHa(X;1)) .
Similarly, if X is IUGRL, then
(3.3) h(t) < (@) exp (—aHa(X;1)).

Corollary 3.6. Let R(t) be a DUGRL(IUGRL), then

R < e (- [ (@) o (-t (X
forall ¢t > 0.
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