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ABSTRACT. In this note we present exact lower and upper bounds for the integral of a product
of nonnegative convex resp. concave functions in terms of the product of individual integrals.
They are found by adapting the convexity method to the case of product sets.
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1. I NTRODUCTION

Let f andg be integrable functions defined on the interval[a, b], such thatfg is integrable.
Let us introduce the quantities

A = A(f, g) =
1

b− a

∫ b

a

f(x) dx · 1

b− a

∫ b

a

g(x) dx,

B = B(f, g) =
1

b− a

∫ b

a

f(x)g(x) dx.

(1.1)

It is well known thatA ≤ B if both f andg are either increasing or decreasing. On the
other hand, whenf andg possess opposite monotonicity properties,A ≥ B holds. These are
sometimes referred to as Chebyshev inequalities.

Whenf andg are supposed to be bounded, the classical Grüss inequality [5] provides an
upper bound for the differenceB − A.

For convex and increasing functions withf(a) = g(a) = 0 Andersson [1] showed that
Chebyshev’s inequality can be improved by a constant factor, namely,B ≥ 4

3
A. The require-

ment of convexity can be somewhat relaxed, see Fink [4].
In the case where bothf andg are nonnegative convex functions, Pachpatte [8] presented

(and Cristescu [2] corrected) linear upper bounds for certain triple integrals in terms of(b −
a)−1

∫ b

a
f(x)g(x) dx and[f(a) + f(b)][g(a) + g(b)].
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2 VILL Ő CSISZÁR AND TAMÁS F. MÓRI

The aim of the present note is to analyse the exact connection between the quantitiesA andB
in the case where bothf andg are nonnegative and either convex or concave functions. We will
compute exact upper and lower bounds by adapting the convexity method to our problem. That
method is often applied to characterize the range of several integral-type functionals when the
domain is a convex set of functions. A detailed description of the method and some examples
of applications can be found in [3] or [7].

Notice thata = 0, b = 1 can be assumed without loss of generality. Indeed, let us introduce
f̃(t) = f(a(1 − t) + bt) and g̃(t) = g(a(1 − t) + bt), 0 ≤ t ≤ 1. Thenf̃ and g̃ are convex
(concave) functions, provided thatf andg are, and

1

b− a

∫ b

a

f(x) dx · 1

b− a

∫ b

a

g(x) dx =

∫ 1

0

f̃(t) dt ·
∫ 1

0

g̃(t) dt,

1

b− a

∫ b

a

f(x)g(x) dx =

∫ 1

0

f̃(t)g̃(t) dt.

The paper is organized as follows.
Section 2 contains a description of a variant of the convexity method adapted to the case of

product sets.
In Section 3 unimprovable upper and lower bounds are derived forB in terms ofA and

[f(a) + f(b)][g(a) + g(b)], in the case of nonnegative convex continuous functionsf andg, see
Corollary 3.5.

In Section 4 the range ofB is determined as a function ofA, for nonnegative concave func-
tionsf andg.

In the last section we briefly deal with the more general case of multiple products.

2. THE CONVEXITY M ETHOD ON PRODUCTS OF CONVEX SETS

Let (X ,B, λ) be a measure space andF a closed convex set ofλ-integrable functionsf :
X → R. SupposeH = {hθ : θ ∈ Θ} ⊂ F is a generating subset, given in parametrized form,
in the sense that for everyf ∈ F one can find a probability measureµ defined on the Borel sets
of the parameter spaceΘ such that

(2.1) f(x) =

∫
Θ

hθ(x) µ(dθ),

that is, everyf ∈ F has a representation as a mixture of elements inH. (Of course, the function
θ 7→ hθ(x) is supposed to be measurable, forλ-a. e. x ∈ X .) Then all integrals of the form
(2.1) belong toF , and the set

{∫
X f dλ : f ∈ F

}
is equal to the closed convex hull of the set{∫

X hθ dλ : θ ∈ Θ
}

.
Suppose we are given a pair of functions in the form

f(x) =

∫
Θ

hθ(x) µ(dθ), g(x) =

∫
Θ

hθ(x) ν(dθ).

Then by interchanging the order of integration one can see that

B(f, g) =

∫
X

fg dλ =

∫
X

(∫
Θ

hθ(x) µ(dθ)

∫
Θ

hτ (x) ν(dτ)

)
λ(dx)

=

∫
Θ

∫
Θ

(∫
X

hθ(x)hτ (x) λ(dx)

)
µ(dθ) ν(dτ)

=

∫
Θ

∫
Θ

B(hθ, hτ ) µ(dθ) ν(dτ),
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and similarly,

A(f, g) =

∫
X

f dλ

∫
X

g dλ =

∫
X

∫
Θ

hθ(x) µ(dθ) λ(dx)

∫
X

∫
Θ

hτ (x) ν(dτ) λ(dx)

=

∫
Θ

∫
Θ

(∫
X

hθ(x) λ(dx)

∫
X

hτ (x) λ(dx)

)
µ(dθ) ν(dτ)

=

∫
Θ

∫
Θ

A(hθ, hτ ) µ(dθ) ν(dτ).

(The order of integration can be interchanged by Fubini’s theorem, under suitable conditions;
for instance, when all functions inF are nonnegative.)

Thus, in this case we can say that the planar set

S(F) =
{(

A(f, g), B(f, g)
)

: f, g ∈ F
}

is still a subset of the closed convex hull of

S(H) =
{(

A(hθ, hτ ), B(hθ, hτ )
)

: θ, τ ∈ Θ
}

,

but in general equality does not necessarily hold. However, ifS(H) entirely contains the bound-
ary of its convex hull, we can conclude that

(2.2) min / max{B(f, g) : f, g ∈ F , A(f, g) = A}
= min / max{B(hθ, hτ ) : θ, τ ∈ Θ, A(hθ, hτ ) = A}.

3. EXACT BOUNDS IN THE CASE OF CONVEX FUNCTIONS

Whenf andg are nonnegative and convex, we can suppose thatf(a)+f(b) = g(a)+g(b) =
1, because they appear as multiplicative factors in the integrals. If there is an upper or lower
bound of the form

B(f, g) ≤ (≥) F
(
A(f, g)

)
in this particular case, it can be extended to the general case as

(3.1) B(f, g) ≤ (≥) [f(a) + f(b)] [g(a) + g(b)] F

(
A(f, g)

[f(a) + f(b)] [g(a) + g(b)]

)
.

So let

(3.2) F = {f : [0, 1] → R : f is convex, continuous,f ≥ 0, f(0) + f(1) = 1} .

The following lemma describes the extremal points ofF .

Lemma 3.1([7, Theorem 2.1]). The set of extremal points ofF is equal to

H = {hθ, kθ : 0 < θ ≤ 1},

wherehθ(x) =
(
1− x

θ

)+

, andkθ(x) = hθ(1− x) =
(
1− 1−x

θ

)+

.

We are going to find the setS(F) by using the method described in Section 2.

Theorem 3.2.

S(F) =

{
(A, B) : 0 < A ≤ 1

4
, max

(
0,

(4
√

A− 1)3

24A

)
≤ B ≤ 2

3

√
A

}
.
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Proof. By (2.2), the first thing we do is characterizeS(H). It is the union of the following four
sets.

S11 =
{(

A(hθ, hτ ), B(hθ, hτ )
)

: θ, τ ∈ Θ
}

,

S12 =
{(

A(hθ, kτ ), B(hθ, kτ )
)

: θ, τ ∈ Θ
}

,

S21 =
{(

A(kθ, hτ ), B(kθ, hτ )
)

: θ, τ ∈ Θ
}

,

S22 =
{(

A(kθ, kτ ), B(kθ, kτ )
)

: θ, τ ∈ Θ
}

.

SinceA and B are symmetric functions,S12 and S21 are obviously identical. In addition,
S11 ≡ S22, because transformationt ↔ 1− t does not alter the integrals but it mapshθ into kθ.
Thus, it suffices to deal withS11 andS12.

Let us start withS11. By symmetry we can assume thatθ ≤ τ . Then clearly,A(hθ, hτ ) = θτ
4

,

andB(hθ, hτ ) = θ(3τ−θ)
6τ

. Let us fixA(hθ, hτ ) = A, thenθ ≤ 2
√

A ≤ τ , andB(hθ, hτ ) =
θ(12A−θ2)

24A
is maximal ifθ = τ = 2

√
A, with a maximum equal to2

3

√
A.

Turning toS12 we find thatA(hθ, kτ ) =
θτ

4
again, andB(hθ, kτ ) = (θ+τ−1)3

6θτ
if θ + τ > 1,

and0 otherwise. HenceB is minimal if, and only ifθ + τ is minimal; that is,θ = τ = 2
√

A.

The minimum is equal to(4
√

A−1)3

24A
, if A > 1/16, and0 otherwise. Finally, by Chebyshev’s

inequality cited in the Introduction we have that

B(hθ, kτ ) ≤ A(hθ, kτ ) = A(hθ, hτ ) ≤ B(hθ, hτ ),

thus the upper boundary ofS11 ∪ S12 is that ofS11, and the lower boundary is that ofS12 (see
Figure 3.1 after Remark 3.3).

If we show that the lower boundary ofS(H) is convex and the upper one is concave, (2.2)
will imply that S(F) has the same lower and upper boundaries. It is obvious for the upper
boundary, and it follows for the lower boundary by the positivity of the second derivative

d2B

dA2
= −2

3
A−3/2 +

3

8
A−5/2 − 1

12
A−3 =

(4
√

A− 1)(2−
√

A− 4A)

24A3

for 1/16 < A ≤ 1/4.
Finally, we show that every point of the convex hull ofS(H) is an element ofS(F). Let

0 < A ≤ 1/4, andB(hθ, kθ) < B < B(hθ, hθ), whereθ = 2
√

A. ThenB = αB(hθ, kθ)+(1−
α)B(hθ, hθ) for someα, 0 < α < 1. Suppose first thatα > 1/2 and look forf andg in the
form f = phθ + (1− p)kθ, g = (1− p)hθ + pkθ, with a suitablep ∈ (0, 1). By the bilinearity
of B we have that

B(f, g) = p(1− p)B(hθ, hθ) + p2B(hθ, kθ) + (1− p)2B(kθ, hθ) + (1− p)pB(kθ, kθ)

= 2p(1− p)B(hθ, hθ) + [p2 + (1− p)2]B(hθ, kθ),

thus we obtain the equation2p(1− p) = 1− α. It is satisfied byp = 1
2

(
1±

√
2α− 1

)
.

Next, suppose thatα ≤ 1/2. This time letf = g = phθ + (1− p)kθ. Then

B(f, g) = p2B(hθ, hθ) + p(1− p)B(hθ, kθ) + (1− p)pB(kθ, hθ) + (1− p)2B(kθ, kθ)

= 2p(1− p)B(hθ, kθ) + [p2 + (1− p)2]B(hθ, hθ),

therefore2p(1− p) = α, and the solution isp = 1
2

(
1±

√
1− 2α

)
. �

Remark 3.3. Linear upper and lower bounds can be obtained by drawing the tangent lines to
the upper resp. lower boundaries at the points(1/4, 1/3), resp.(1/4, 1/6). They are as follows.
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Figure 3.1:S(F) with the linear bounds of(3.3).

(3.3)
4

3
A− 1

6
≤ B ≤ 2

3
A +

1

6
.

Remark 3.4. Based solely onA, that is, without involving another quantity like[f(a) +
f(b)] [g(a) + g(b)], we cannot expect any useful bound forB. Indeed, letA be fixed, and
f = 4Ahθ/θ with a smallθ. Then choosingg = hθ givesA(f, g) = A andB(f, g) = 4

3
A/θ,

thusB can be arbitrarily large. On the other hand, withg = kθ we haveB = 0.

At the end of this section we repeat our main result in the original setting. Theorem 3.2
combined with (3.1) yields the following exact bounds. With the notations of (1.1) andC =
[f(a) + f(b)] [g(a) + g(b)] we have

Corollary 3.5.

(1) Upper bound.

B ≤ 2

3

√
AC.

(2) Lower bound.
If A < C/16, there is no lower estimate better than the trivial oneB ≥ 0.
On the other hand, ifA ≥ C/16, then

B ≥
√

C
(
4
√

A−
√

C
)3

24A
.

If one prefers linear lower and upper bounds of Cristescu style [2] at the expense of accuracy,
(3.3) transforms into

(3.4)
4

3
A− 1

6
C ≤ B ≤ 2

3
A +

1

6
C.
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4. EXACT BOUNDS IN THE CASE OF CONCAVE FUNCTIONS

Let f andg be nonnegative concave functions. We shall suppose that

1

b− a

∫ b

a

f(x) dx =
1

b− a

∫ b

a

g(x) dx = 1.

We fix A = 1, and by computing the range ofB we obtain exact lower and upper bounds for
the ratioB(f, g)/A(f, g) in the general case.

Thus, the set of functions in consideration is

F =

{
f : [0, 1] → R : f is concave,f ≥ 0,

∫ 1

0

f(x) dx = 1

}
.

The extremal points ofF are the triangle functions.

Lemma 4.1([3, Example 5 in Section 1]). The set of extremal points ofF is equal to

H = {hθ : 0 ≤ θ ≤ 1},

whereh0(x) = 2(1− x), h1(x) = 2x, and

hθ(x) =

{
2 x

θ
, if 0 ≤ x < θ,

2 1−x
1−θ

, if θ ≤ x ≤ 1,

for 0 < θ < 1.

Theorem 4.2.{B(f, g) : f, g ∈ F} = [2/3, 4/3].

Proof. By the reasoning of Section 2 we can see that

(4.1) {B(f, g) : f, g ∈ F} ⊂
[
min
θ,τ

B(hθ, hτ ), max
θ,τ

B(hθ, hτ )
]
.

While computing the right-hand side we can assume thatθ ≤ τ . Thus,∫ 1

0

hθ(x)hτ (x) dx =

∫ θ

0

4x2

θτ
dx +

∫ τ

θ

4(1− x)x

(1− θ)τ
dx +

∫ 1

τ

4(1− x)2

(1− θ)(1− τ)
dx

=
4θ2

3τ
+

6(τ 2 − θ2)− 4(τ 3 − θ3)

3(1− θ)τ
+

4(1− τ)2

3(1− θ)

=
4τ − 2θ2 − 2τ 2

3(1− θ)τ
.

This is a decreasing function ofτ for every fixedθ, hence the maximum is attained whenτ = θ,
and the minimum, whenτ = 1. In the former caseB = 4/3, independently ofθ. In the latter
caseB = 2

3
(1 + θ), which is minimal forθ = 0.

On the other hand, since the range ofB(h0, hτ ), asτ runs from 0 to 1, is equal to the closed
interval[2/3, 4/3], we get that (4.1) holds with equality. �

Corollary 4.3. Letf andg be nonnegative concave functions defined on[a, b]. Then

2

3
· 1

b− a

∫ b

a

f(x) dx · 1

b− a

∫ b

a

g(x) dx

≤ 1

b− a

∫ b

a

f(x)g(x) dx ≤ 4

3
· 1

b− a

∫ b

a

f(x) dx · 1

b− a

∫ b

a

g(x) dx.
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5. M ULTIPLE PRODUCTS

A natural generalization of the problem is the case of multiple products, that is, where
f1, . . . , fn all belong to some classF , and

A =
n∏

i=1

∫ 1

0

fi(x) dx, B =

∫ 1

0

n∏
i=1

fi(x) dx.

The aim is to find lower and upper estimates forB in terms ofA.
The reasoning of Section 2 can easily be extended to this case. Convex lower and concave

upper estimates derived in the particular case where all functions are taken from a generating
setH ⊂ F remain valid even if the functions can come fromF .

The easiest to repeat among the results of Sections 3 and 4 is the upper estimate for con-
vex functions. LetF be the set defined in (3.2), andH the set of extremals characterized by
Lemma 3.1. Then we have the following sharp upper bound.

Theorem 5.1.

(5.1) B ≤ 2

n + 1
A1/n.

(Compare this with Andersson’s resultB ≥ 2n

n + 1
A, which is valid for increasing convex

functions withf(0) = 0.)

Proof. Let us divideS(H) into n + 1 parts,S(H) = ∪n
i=0Si, according to the number of

functionshθ among then arguments (the other functions are of the formkθ). Clearly,Si ≡ Sn−i.
When dealing withmax B for fixedA, we may focus onS0, becauseA does not change if every
kθ is substituted with the correspondinghθ, whileB increases by Chebyshev’s inequality. Thus,
let our convex functions befi = hθi

, 1 ≤ i ≤ n, with 0 ≤ θ1 ≤ · · · ≤ θn ≤ 1, and suppose that
n∏

i=1

θi = 2nA

is fixed. Maximize

B =

∫ θ1

0

n∏
i=1

(
1− x

θi

)
dx.

We are going to show that the the integrand is pointwise maximal ifθ1 = · · · = θn. Then by
increasingθ1 we also increase the domain of integration, hence

max B =

∫ θ

0

(
1− x

θ

)n

dx =
θ

n + 1
,

whereθn = 2nA.
Let zi = − log θi, then(z1 + · · ·+ zn)/n = − log θ. We have to show that

n∏
i=1

(
1− x

θ1

)
≤
(
1− x

θ

)n

,

or equivalently,

(5.2)
1

n

n∑
i=1

ϕ(zi) ≤ ϕ
(z1 + · · ·+ zn

n

)
,
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whereϕ(t) = 1− x et. Hereϕ is concave, for its second derivative

ϕ′′(t) = − x et

ϕ(t)2
≤ 0.

Thus, (5.2) is implied by the Jensen inequality.
Now the proof can be completed by noting that the upper bound in (5.1) is a concave function

of A. �

Theorem 5.1 immediately implies the following sharp inequality.

Corollary 5.2. Letf1, . . . , fn be nonnegative convex continuous functions defined on the inter-
val [a, b]. Then∫ b

a

n∏
i=1

fi(x) dx ≤ 2

n + 1

(
n∏

i=1

∫ b

a

fi(x) dx

) 1
n
(

n∏
i=1

[fi(a) + fi(b)]

)1− 1
n

.

Remark 5.3. The continuity of the functionsfi can be left out from the set of conditions. Being
convex, they are continuous on the open interval(a, b), but can have jumps ata or b. If we
redefine them at the endpoints so that they become continuous, the integrals do not change, but
the sumsfi(a) + fi(b) decrease. Therefore the upper bound obtained for continuous functions
remains valid in the general case.
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