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ABSTRACT. In this note we present exact lower and upper bounds for the integral of a product
of nonnegative convex resp. concave functions in terms of the product of individual integrals.
They are found by adapting the convexity method to the case of product sets.
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1. INTRODUCTION

Let f andg be integrable functions defined on the interjab], such thatfg is integrable.
Let us introduce the quantities

b b
A=A(fg) =y [ s@de 2 [ g@)dn

(1.1) o
B=B(f.g) = ;= [ f@l)de

It is well known thatA < B if both f and g are either increasing or decreasing. On the
other hand, wherf andg possess opposite monotonicity propertids> B holds. These are
sometimes referred to as Chebyshev inequalities.

When f and g are supposed to be bounded, the classical Gruss inequality [5] provides an
upper bound for the differencé — A.

For convex and increasing functions wifila) = ¢g(a) = 0 Andersson([1] showed that
Chebyshev’s inequality can be improved by a constant factor, nanﬁely,% A. The require-
ment of convexity can be somewhat relaxed, see Fink [4].

In the case where botfi and g are nonnegative convex functions, Pachpatte [8] presented
(and Cristescu |2] corrected) linear upper bounds for certain triple integrals in terths-of

)" [? f(«)g(x) dz and[f(a) + f(b)][g(a) + g(b)].

192-07


mailto:villo@ludens.elte.hu
mailto:moritamas@ludens.elte.hu
http://www.ams.org/msc/

2 VILL 6 CSISZAR AND TAMAS F. MORI

The aim of the present note is to analyse the exact connection between the quarartts
in the case where bothandg are nonnegative and either convex or concave functions. We will
compute exact upper and lower bounds by adapting the convexity method to our problem. That
method is often applied to characterize the range of several integral-type functionals when the
domain is a convex set of functions. A detailed description of the method and some examples
of applications can be found in![3] arl[7].

Notice thate = 0, b = 1 can be assumed without loss of generality. Indeed, let us introduce
f(t) = f(a(l —t) +bt) andg(t) = g(a(l —t) +bt),0 <t < 1. Thenf andg are convex
(concave) functions, provided thatandg are, and

bialfﬂxﬁm.bialfmxym:iéiﬂ@ﬁ.[faﬂdt

1

= [ f@ata) s = [ Foya ae

The paper is organized as follows.

Sectior] 2 contains a description of a variant of the convexity method adapted to the case of
product sets.

In Section[ 8 unimprovable upper and lower bounds are derivedfar terms of A and
[f(a)+ f(b)][g(a)+ g(b)], in the case of nonnegative convex continuous functjpasdg, see
Corollary[3.5.

In Sectior| 4 the range dB is determined as a function ¢f, for nonnegative concave func-
tions f andg.

In the last section we briefly deal with the more general case of multiple products.

2. THE CONVEXITY METHOD ON PRODUCTS OF CONVEX SETS

Let (X, B,)\) be a measure space astda closed convex set of-integrable functiong :
X — R. Supposé{ = {hy : § € ©} C F is a generating subset, given in parametrized form,
in the sense that for everlye F one can find a probability measyredefined on the Borel sets
of the parameter spaée such that

(2.1) f(z) = / ho(x) 1(d6),

that is, everyf € F has arepresentation as a mixture of elements.ifOf course, the function
0 — hy(x) is supposed to be measurable, fea.e. x € X.) Then all integrals of the form
(2.1) belong taF, and the se{fX fdx: fe j‘—"} is equal to the closed convex hull of the set
{thgd)\ 10 e @}.

Suppose we are given a pair of functions in the form

fa) = / ho(x) pu(d),  g(z) = / o) v(df).

Then by interchanging the order of integration one can see that

51,9 = [ saar= [ ([ tato)utas) [ nete)vian )aan
= [ ([ ottt 260 )utat) vt

:Aémmmmwwwx
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and similarly,

A(f,g) = /X fdA /X gdx = /X / ho(x) p(d9) A(dz) /X / e (2) v(dr) A(da)
= [ (] rotwrao) [ o) ) )utao) viar)

_ /@ /@ Alhg, he) p(d6) v(dr).

(The order of integration can be interchanged by Fubini’'s theorem, under suitable conditions;
for instance, when all functions i are nonnegative.)
Thus, in this case we can say that the planar set

S(F) ={(A(f.9), B(f,9)) : f.9 € F}
is still a subset of the closed convex hull of
S(H) = {(A(hg, h;), B(hg,h;)) : 0,7 € O},
but in general equality does not necessarily hold. Howeve&i(/) entirely contains the bound-
ary of its convex hull, we can conclude that

(2.2) min/max{B(f,g): f,g € F, A(f,g9) = A}
= min /max{B(hg, h,) : 0,7 € O, A(hy,h,;) = A}.

3. EXACT BOUNDS IN THE CASE OF CONVEX FUNCTIONS

Whenf andg are nonnegative and convex, we can supposefthatt- f(b) = g(a) +g(b) =
1, because they appear as multiplicative factors in the integrals. If there is an upper or lower
bound of the form

B(f,9) < (=) F(A(f.9))
in this particular case, it can be extended to the general case as

A(f,9) )
[f(a) + f(D)] [g(a) + g(b)] )

GY Bl < ()@ + O]l + o] F (

So let
82) F={f:]0,1] — R: fisconvex, continuous; >0, f(0)+ f(1) =1}.
The following lemma describes the extremal pointsFof
Lemma 3.1([[7, Theorem 2.1]) The set of extremal points &f is equal to

H:{hg, k‘920<9§1},
+ +

wherehy(z) = <1 — g) , andky(z) = he(1 —2) = (1 — 1%‘”) :

We are going to find the sé&t(F) by using the method described in Secfidn 2.
Theorem 3.2.

S(]—"):{(A,B): 0<A§i, maX(O, (4\/224—;1)3) §B§§\/Z}.
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Proof. By (2.2), the first thing we do is characterig€H). It is the union of the following four
sets.

Si = {(A(hg, hr), Blho,hy)) : 0,7 € O},
Si2 = {(Alho, k:), B(ho, k;)) : 6,7 € O},
So1 = {(A(ko, ), B(ko,hr)) : 0,7 € O},
Syo = {(A(ko, k-), B(ko, k:)) : 0,7 € ©}.

Since A and B are symmetric functions$;, and S,; are obviously identical. In addition,
S11 = Sy, because transformatiagn— 1 — ¢ does not alter the integrals but it malpsinto ;.
Thus, it suffices to deal with;; and.S;s.

Let us start withS;;. By symmetry we can assume tltatl . Then clearlyA(hy, h,) = ‘{f
and B(hg, h,) = 289 Let us fix A(hg, h,) = A, thenf < 2/A < 7, andB(hg, h,) =

67
bU24-0") js maximal ifg = 7 = 2/A, with a maximum equal t§+/A.

Turning to Sy, we find thatA(hg, k) = %T again, andB(hg, k,) = G000 9 7 > 1,

and0 otherwise. Henceé3 is minimal if, and only ifd + 7 is minimal; that isg = 7 = 2v/A.
The minimum is equal té“fi1 if A > 1/16, and0 otherwise. Finally, by Chebyshev’s

24A
inequality cited in the Introduction we have that

B(hg, k’r) < A(h97 kT) = A(h97 hT) < B(h97 hT)?

thus the upper boundary 6f; U S5 is that of S;;, and the lower boundary is that 6f; (see
Figure[3.1 after Remaik 3.3).

If we show that the lower boundary 6f(H) is convex and the upper one is concaye,]|(2.2)
will imply that S(F) has the same lower and upper boundaries. It is obvious for the upper
boundary, and it follows for the lower boundary by the positivity of the second derivative

1

d’B 2 ap 3 (4/A—1)(2 — VA —4A)
e B 482 0 452 1 43
gz~ 34 gA The 2443

for1/16 < A <1/4.
Finally, we show that every point of the convex hull %) is an element of(F). Let

0 < A<1/4,andB(hg, kg) < B < B(hg, hg), whered = 2v/A. ThenB = aB(hg, kg) + (1 —
a)B(hgy, hg) for somea, 0 < a < 1. Suppose first that > 1/2 and look for f andg in the
form f = phy + (1 — p)ks, g = (1 — p)hy + pke, With a suitablep € (0,1). By the bilinearity
of B we have that
B(f,9) = p(1 = p)B(hg, he) + p*B(h, kg) + (1 — p)*B(ko, ho) + (1 — p)pB kg, ko)
= 2p(1 — p)B(hg, hg) + [p* + (1 — p)?|B(hq, ko),
thus we obtain the equatia@p(1 — p) = 1 — . Itis satisfied by = § (1 = v2a —1).
Next, suppose that < 1/2. Thistime letf = g = phy + (1 — p)ks. Then
B(f,9) = p*B(ho, hg) +p(1 — p)B(h, kg) + (1 — p)pB(kg, hg) + (1 — p)>B(kg, ko)
= 2p(1 — p)B(hg, ko) + [p> + (1 — p)*| B(hg, he),

therefore2p(1 — p) = «, and the solution ip = 3 (1 £ /1 — 2«). O

Remark 3.3. Linear upper and lower bounds can be obtained by drawing the tangent lines to
the upper resp. lower boundaries at the paofihfd, 1/3), resp.(1/4, 1/6). They are as follows.
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Figure 3.1: S(F) with the linear bounds 0(3.3).

(3.3) A--<B<ZA+

[GVR )
[N

W
[ =

Remark 3.4. Based solely on4, that is, without involving another quantity likgf(a) +
f(0)]g(a) + g(b)], we cannot expect any useful bound Br Indeed, letA be fixed, and
f = 4Ahy/0 with a smallf. Then choosing = hy givesA(f,g) = AandB(f,g) = 5A/0,
thus B can be arbitrarily large. On the other hand, wjth- k4 we haveB = 0.

At the end of this section we repeat our main result in the original setting. Thegorém 3.2
combined with[(3.]1) yields the following exact bounds. With the notation§ of (1.1 ard

[f(a) 4+ f(b)] [g(a) + g(b)] we have
Corollary 3.5.
(1) Upper bound.

(2) Lower bound.
If A < C/16, there is no lower estimate better than the trivial dse> 0.
On the other hand, il > C'/16, then

5o VO (avA-ve)
= 244

If one prefers linear lower and upper bounds of Cristescu style [2] at the expense of accuracy,
(3.3) transforms into

4 1 2 1
3.4 —A--C<B<-A+-C.
(3:4) 3 60_ -3 +6
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4. EXACT BOUNDS IN THE CASE OF CONCAVE FUNCTIONS

Let f andg be nonnegative concave functions. We shall suppose that

b—a/f b_a/bg(ﬁ)d:vzl,

We fix A = 1, and by computing the range &f we obtain exact lower and upper bounds for
the ratioB(f, g)/A(f, g) in the general case.
Thus, the set of functions in consideration is

F = {f: 0,1] = R: fisconcavefz(),/olf(a:)dx: 1}.
The extremal points of are the triangle functions.
Lemma 4.1([3, Example 5 in Section 1])The set of extremal points &f is equal to
H=1{hg:0<6<1},
wherehg(z) = 2(1 — x), hi(x) = 2z, and
{ 25, if 0<x <,

h@(ZL‘) = 2 1—

5, I 0<az<1,
for0 <6 < 1.
Theorem 4.2.{B(f,q): f,g € F} =[2/3, 4/3].

Proof. By the reasoning of Sectign 2 we can see that

(4.1) {B(f.9): f.9 € F} C |min B(hg, hy), max B(hy, hy)|.
While computing the right-hand side we can assumedthatr. Thus,
T4(1 —a)x o411 —2)?
/’” dm‘/ T =y e et
40 6(rP =07 —A(r° - 60°) 40 —1)?
- 37 3(1—6)r 3(1 —0)
4T — 20% — 272
3(1—0)r

This is a decreasing function offor every fixedd, hence the maximum is attained wheg- 0,
and the minimum, whemn = 1. In the former casé& = 4/3, independently of. In the latter
caseB = (1 + 6), which is minimal forf = 0.

On the other hand, since the rangeiifh, i), as7 runs from 0 to 1, is equal to the closed
interval [2/3, 4/3], we get that[(4]1) holds with equality. O

Corollary 4.3. Let f andg be nonnegative concave functions defineduoh]. Then

2

3

1
x)dx~b

_a/abg(x)dx

gbia/abf(a:)g(as)dxg _a/f ) b_a/ o(x) d.
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5. MULTIPLE PRODUCTS

A natural generalization of the problem is the case of multiple products, that is, where
fi,..., fn all belong to some clasg, and

A:ilj/olfi(x)dx, B:/Oliljfi(x)dx.

The aim is to find lower and upper estimates fm terms ofA.

The reasoning of Sectigr) 2 can easily be extended to this case. Convex lower and concave
upper estimates derived in the particular case where all functions are taken from a generating
setH C F remain valid even if the functions can come frofn

The easiest to repeat among the results of Secfipns 8]and 4 is the upper estimate for con-
vex functions. LetF be the set defined i (3.2), arfid the set of extremals characterized by
Lemmd 3.1. Then we have the following sharp upper bound.

Theorem 5.1.

(5.1) B < Al

“n+1

n

(Compare this with Andersson’s resut >
functions withf(0) = 0.)

1 A, which is valid for increasing convex
n

Proof. Let us divideS(H) into n + 1 parts, S(H) = U} ,S;, according to the number of
functionshy among the: arguments (the other functions are of the fdyh Clearly,S; = S,,_;.
When dealing withnax B for fixed A, we may focus orb,,, becausel does not change if every
k¢ is substituted with the correspondihg, while B increases by Chebyshev’s inequality. Thus,
let our convex functions bg = hy,, 1 <i <n,with0 <6, <--. <6, <1, and suppose that

i=1

B:/Oelﬁ(1—§>dx.

]

is fixed. Maximize

We are going to show that the the integrand is pointwise maxintal i# --- = 6,,. Then by
increasing); we also increase the domain of integration, hence

0 T\" 0
maxB:/()(l—g) d:l::n+1,
wheref™ = 2" A.

Letz; = —log#;, then(z; + - - - + z,) /n = — log 6. We have to show that

f10-5)=0-5)"

1=

or equivalently,

52) 3l < (B,
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wherep(t) = 1 — x ¢'. Herey is concave, for its second derivative

" el
() =— <0.
() p(t)?

Thus, [5.2) is implied by the Jensen inequality.
Now the proof can be completed by noting that the upper bound ih (5.1) is a concave function
of A. O

Theorenj 5.]l immediately implies the following sharp inequality.

Corollary 5.2. Let f1,..., f, be nonnegative convex continuous functions defined on the inter-
val [a, b]. Then

/abilifi(w) dx < ni—i—l (lli /ab fi(x) dx)

Remark 5.3. The continuity of the functiong; can be left out from the set of conditions. Being
convex, they are continuous on the open intefvab), but can have jumps at or b. If we

redefine them at the endpoints so that they become continuous, the integrals do not change, but
the sumsf;(a) + f;(b) decrease. Therefore the upper bound obtained for continuous functions
remains valid in the general case.

3=

(H o) + ﬁ-(b)]) N

=1
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