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ABSTRACT. In this paper, we establish the following: Leta1, a2, . . . , am be non negative real
numbers, then for alln ≥ 0, we have

1(
n+m−1

m−1

) ∑
i1+i2+···+im=n

ai1
1 ai2

2 · · · aim
m ≥

(
a1 + a2 + · · ·+ am

m

)n

.

The casem = 2 gives the Haber inequality. We apply the result to find lower bounds for the
sum of reciprocals of multinomial coefficients and for symmetric functions.
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1. I NTRODUCTION

In 1978, S. Haber [3] proved the following inequality: Leta and b be non negative real
numbers, then for everyn ≥ 0, we have

(1.1)
1

n + 1

(
an + an−1b + · · ·+ abn−1 + bn

)
≥

(
a + b

2

)n

.

Another formulation of(1.1) is

f (x, y) ≥ f
(

1
2
, 1

2

)
for all non negative numbersx, y satisfyingx + y = 1,

where

f (x, y) =
∑

i+j=n

xiyj with x =
a

a + b
andy =

b

a + b
.

In 1983 [5], A. Mc.D. Mercer, using an analogous technique, gave an extension of Haber’s
inequality for convex sequences.

Special thanks to A. Chabour, S. Y. Raffed, and R. Souam for useful discussions. The proof given in the remark is due to A. Chabour.
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Let (uk)0≤k≤n be a convex sequence, then the following inequality holds

(1.2)
1

n + 1

n∑
k=0

uk ≥
n∑

k=0

(
n

k

)
uk.

In 1994 [1], using also the same tools, H. Alzer and J. Pečaríc obtained a more general result
than the relation(1.2).

In 2004 [6], A. Mc.D. Mercer extended the result using an equivalent inequality of(1.1) as a
polynomial inx = a

b
, and deduced relations satisfying(1.2), see [1].

Let P (x) =
∑n

k=0 akx
k satisfyP (x) = (x− 1)2 Q (x) , where the coefficients ofQ (x) are

real and non negative. Then if(uk)0≤k≤n is a convex sequence, we have

(1.3)
n∑

k=0

akuk ≥ 0.

Our proposal is to establish an extension of the relation(1.1) to n real numbers.

2. M AIN RESULT

In this section, we give an extension of the inequality given by the relation(1.1) for several
variables.

Theorem 2.1(Generalized Haber inequality). Leta1, a2, . . . , am be non negative real numbers,
then for alln ≥ 0, one has

(2.1)
1(

n+m−1
m−1

) ∑
i1+i2+···+im=n

ai1
1 ai2

2 · · · aim
m ≥

(
a1 + a2 + · · ·+ am

m

)n

.

For another formulation of(2.1), let us consider the following homogeneous polynomial of
degreen

fm (x1, x2, . . . , xm) =
∑

i1+i2+···+im=n

xi1
1 xi2

2 · · ·xim
m

wherex1, x2, . . . , xm are non negative real numbers satisfying the constraintx1+x2+· · ·+xm =
1. By setting for alli = 1, . . . ,m; xi = ai

a1+a2+···+am
, the inequality given by(2.1) becomes

(2.2) fm (x1, x2, . . . , xm) ≥ fm

(
1
m

, 1
m

, . . . , 1
m

)
Proof. Let (y1, y2, . . . , ym) be the values for whichfm is minimal. It is well known that the
gradient offm at (y1, y2, . . . , ym) is parallel to that of the constraint which is(1, 1, . . . , 1) , one
then deduces

∂fm

∂xα

(x1, . . . , xm)

∣∣∣∣
xα=yα

=
∂fm

∂xβ

(x1, . . . , xm)

∣∣∣∣
xβ=yβ

,

for all α, β, 1 ≤ α 6= β ≤ m, which is equivalent to

∑
i1+···+im=n

iα

 m∏
j=1

j 6=α,β

x
ij
j

 yiα−1
α y

iβ
β =

∑
i1+···+im=n

iβ

 m∏
j=1

j 6=α,β

x
ij
j

 yiα
α y

iβ−1

β ,

i.e. ∑
i1+···+im=n

 m∏
j=1

j 6=α,β

x
ij
j

 yiα−1
α y

iβ−1

β (iαyβ − iβyα) = 0,
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which one can write as

n∑
r=0

 ∑
iα+iβ=r

yiα−1
α y

iβ−1

β (iαyβ − iβyα)


 ∑

i1+···+im=n−r
ik 6=iα & ik 6=iβ

 m∏
j=1

j 6=α,β

x
ij
j


 = 0.

This last expression is a polynomial of several variablesx1, . . . , xj, . . . , xm (j 6= α, β) which
is null if all coefficients are zero. Then foryα = a andyβ = b, one obtains for everyr = 0, . . . , n∑

i+j=r

ai−1bj−1 (ib− ja) = 0.

By developing the sum and gathering the terms of the same power, one obtains
r−1∑
i=0

(2i + 1− r) aibr−1−i = 0.

By gathering successively the extreme terms of the sum, we have

b r+1
2 c∑

i=0

(r − 2i− 1)
(
ar−2i−1 − br−2i−1

)
a2ib2i = 0

which is equivalent to

(a− b)

b r+1
2 c∑

i=0

r−2i−2∑
k=0

(r − 2i− 1) ak+2ibr−k−2 = 0.

The double summation is positive, then one deduces that

a = b ⇐⇒ yα = yβ.

The symmetric groupSm acts naturally by permutations overR [x1, x2, . . . , xm] and leaves
invariantfm (x1, x2, . . . , xm) andx1 + x2 + · · ·+ xm = 1. Finally, one concludes that

y1 = y2 = · · · = ym =
1

m
.

�

Remark 1. We can prove the above inequality using:
(1) induction overm exploiting Haber’s inequality and the well known relation(

n

i1, i2, . . . , im

)
=

(
n− im

i1, i2, . . . , im−1

)(
n

im

)
.

(2) the sectional method for the function

fm (x1, x2, . . . , xm) =
∑
|i|=n

xi1
1 xi2

2 · · ·xim
m

with the constraintx1 + x2 + · · ·+ xm = 1;
Leta1, a2, . . . , am andb1, b2, . . . , bm be real numbers such that

∑
i ai = 0 and

∑
i bi =

1, bi > 0, and consider the curve

Φ (t) =
∑
|i|=n

(a1t + b1)
i1 (a2t + b2)

i2 · · · (amt + bm)im .

We prove thatb = (b1, b2, . . . , bm) is a local minima forfm if and only if b1 = b2 =
· · · = bm

(
= 1

m

)
.
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Indeed, one has

Φ (t)− Φ (0) ∼=
∑
|i|=n

bi1
1 bi2

2 · · · bim
m

(
i1a1

b1

+
i2a2

b2

+ · · ·+ imam

bm

)
t + · · ·

∼=
(

n + m− 1

m− 1

)
(b1 · · · bm)(

n+m−1
m−1 )

(
i1a1

b1

+ · · ·+ imam

bm

)
t + · · · .

If b1 = b2 = · · · = bm

(
= 1

m

)
thenΦ (t)− Φ (0) ∼= ct2 + · · · , c > 0, . . .

If not, we can choosea1, a2, . . . , am such that
∑

i
ai

bi
6= 0, . . .

N.B. The possible nullity of somebi’s is not a problem.
(3) the Popoviciu’s Theorem given in [7].

3. APPLICATIONS

In this section we apply the previous result to find lower bounds for the sum of reciprocals of
multinomial coefficient and for two symmetric functions.

(1) Sum of reciprocals of multinomial coefficient.

Theorem 3.1.The following inequality holds∑
i1+i2+···+im=n

1(
n

i1,...,im

) ≥ (
n+m−1

m−1

)
m! ·mn

.

Proof. It suffices to integrate each side of the inequality given by the relation(2.2) :

fm (x1, x2, . . . , xm−1, 1− x1 − · · · − xm−1) ≥ fm

(
1
m

, 1
m

, . . . , 1
m

)
over the simplex

D =

{
xi, i = 1, . . . ,m− 1 : xi ≥ 0,

m−1∑
i=1

xi ≤ 1

}
.

The left hand side gives under the sum the Dirichlet function (or the generalized beta
function) and is equal to the reciprocal of a multinomial coefficient. For the right hand
side we are led to compute the volume of the simplexD which is equal to1

m!
. �

(2) An identity due to Sylvester in the 19th century, see [2, Thm 5], states that

Theorem 3.2. Let x1, x2, . . . , xm be independent variables. Then, one has inR[x1, x2,
. . . , xm] ∑

k1+···+km=n

xk1
1 xk2

2 . . . xkm
m =

m∑
i=1

xn+m−1
i∏

j 6=i (xi − xj)
.

As corollary of this theorem and Theorem 2.1, one obtains the following lower bound.

Corollary 3.3. Using the hypothesis of the above theorem, one has
m∑

i=1

xn+m−1
i∏

j 6=i (xi − xj)
≥

(
x1 + x2 + · · ·+ xm

m

)n (
n + m− 1

m− 1

)
.

(3) The third application is about the symmetric polynomials. We need the following result:
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Theorem 3.4([2, Cor. 5] and [4, Th. 1]). Let x1, x2, . . . , xm be elements of unitary
commutative ringA with

Sk =
∑

1≤i1<i2<···<ik≤m

xi1xi2 · · ·xik , for 1 ≤ k ≤ m.

Then, for each positive integern, one has∑
xk1

1 . . . xkm
m =

∑ (
k1 + · · ·+ km

k1, . . . , km

)
(−1)n−k1−···−km Sk1

1 . . . Skm
m ,

where the summations are taken over all m-tuples(k1, k2, . . . , km) of integerskj ≥ 0
satisfying the relationsk1 + k2 + · · · + km = n for the left hand side andk1 + 2k2 +
· · ·+ mkm = n for the right hand side.

This theorem and Theorem 2.1, give:

Corollary 3.5. Using the hypothesis of the last theorem, one has

1(
n+m−1

m−1

) ∑ (
k1 + · · ·+ km

k1, . . . , km

)
(−1)n−k1−···−km Sk1

1 . . . Skm
m ≥

(S1

m

)n

.

where the summation is being taken over all m-tuples(k1, k2, . . . , km) of integerskj ≥ 0
satisfying the relationk1 + 2k2 + · · ·+ mkm = n.
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