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1. The Inequality

The purpose of this contribution is to prove the following.

Theorem 1.1. Lety be a real-valued smooth localized function with non-zero inte-
gral,

(11) / 1/)($) de =M 75 0, Sobolev-Type Inequality
R Ramon G. Plaza
satisfying vol. 8, iss. 1, art. 2, 2007
1.2 Kol dr < forall 4,7 > 0.
1.2) [l u)an <c, i 0 S
Then there exists a uniform constant > 0 such that Contents
(1.3) sup [u(z)| < C, [Jull 5 [lur — a2, “« »
< »
forallu € H'(R) and alla € R.
. . . . ) . Page 3 of 26
Clearly, this result is an extension of the classical Sobolev inequality
9 Go Back
[ullse < 2l[ull 2 l|uall 2.
Full Screen

Assumingy satisfies {.1) and (L.2), inequality (..3) is valid for anyu € H'(R)

and alla € R; here the constarit, > 0 is independent of. and«, but depends on Close
. This result may be useful while studying the asymptotic behavior of solutions to
evolution equations that decay to a manifold spanned by a certain funct{sae
Section2 below). It is somewhat surprising that the result holds fonadt R. The
crucial fact is that the antiderivative gfcannot be in.?, thanks to hypothesid (1).

In this fashion we avoid the casg € span{v}.
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We would like to establish1(3) by extremal functions. Since the solution to
the minimization problem associated with.§) may not exist, our approach will
consist of studying a parametrized family of inequalities for which we can explicitly
compute extremal functions for each parameter value.

Theorem 1.2.Under the assumptions of Theorémi, there exists a constanf > 0
such that

< 1 2 o 2 Sobolev-Type Inequality
(1.4) e < p M ull + pllus — a3, e e e
forall p > 0, « € R, andu in a dense subset @f'(R) with «(0) = 1. Moreover, vol. 8, iss. 1, art. 2, 2007

¢, is also uniform under translatiom(:) = (- + y), wherey € R (even though
hypothesig1.2) is not uniform by translation).

Title Page
Proposition 1.3. Theoreml.2implies Theorem.. 1.
) Contents
Proof. It suffices to show that
13 12 <« >
(L5) 4(0)] < Cullull s llus — a5 ——
with uniformC, > 0, also by translation. Indeed, we can always take, foraayR,
u(x) == u(x +y), Y(z) == Y(x + y), yielding Page 4 of 26
. Go Back
[u(y)| = 1a(0)] < Culjall’ g, — el -
= Cullu(- + )15 lua(- + ) — at(- + )2 Full Screen
= Cullull S’ lue — vl S, Wy R, Close
by uniformity of C,, and by translation invariance &P norms. This showsl(3). journal of inequalities
Now assume Theorem.2 holds. Ifu(0) = 0 then (L.5) holds trivially. In the in pure and applied
caseu(0) # 0, consideri = u/u(0), & = a/u(0) and apply (.4), mathematics

_ issn: 1443-575k
cu(0)* < pHlullZz + pllus — a2

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au

Minimizing overp yieldsp = ||u||z2/||us — at)]| 12, SO that
cxu(0)* < 2ullz2lus — o2
This proves {.5 with C, = \/2/c,. &

Therefore, we are left to prove Theoren?.

1.1. Proof of Theorem1.2

Without loss of generality assume that

(1.6) 1]z = 1.

Sinceu € H', we may use the Fourier transform, and the constrajfif = 1
becomes

1.7) /R ae) de = 1,

up to a constant involving. Note that the expression on the right &f4) defines a
family of functionals parametrized ky> 0,

(1.8) Tl = o /R a(€) e + p /R €i(€) — ai(€)P d.

We shall see by direct computation that the minimizexists and is unique (given
by a simple formula) for each anda. Denoteu = v + iw, v = n + i6 (real and
imaginary parts). Then each functionald) can be written as

@9) 7o) =p" [ 02+ w)dg

R

+ p/R(§2(1)2 + w?) + 20 (wn — vh) + a2(n? + 6%)) dE.
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The constraint{.7) splits into [ vd{ = 1 and [wd¢ = 0. Hence, we have the

following minimization problem

min J*[(v, w)]

ue H1(R)

subject to
Z[(v,w)] = /}Rvdé —1=0,
Tl(v, w)] = / wd = 0,
R

for eachp > 0 anda € R. The Lagrange multiplier conditions

1D oy T [(v,w)] = pDgy 0y [(v, )],
%D(o,hz)j[(v,w)] = vDg,ny)L2[(v, w)],

yield
[0+ o6t pasyhudg = [ e
[ 7w+ ot panads = v [ e
for some(u, v) € R? and for all test functionéh, h,). Therefore

p~lv+ p&u — path = p,
p~rw + p&w + pagn = v.
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Denote)\ = pu + iv. Multiply the second equation by and solve forr andw to
obtain

pA — iap*€d(€)

1+ p28%
Equation (.10 is, in fact, the expression for the minimizer. Whence, we can com-
pute the minimum value af/” for eachp > 0, in terms of A anda. Substituting
(1.10 one obtains (after some computations),
PN+ a?[0?)

L4 p2%€%
Hence we easily find that the minimum value ®f is given by

d 2
Toin = |/\|2/R#p€2§2+04 p W( ) 5 d

(1.10) i =

pHal? + pli¢a — a” =

r 1+ p2¢°
(1.12) = 7|Al* + aT(p),
where
— (8
(1.12) I'(p)==p i %25

Now we find the Lagrange multipliex in terms of« using the constraintl(7),
which implies

1:)\/Ld£_ap/ zﬁw(f) 5 A = At 4+ aO(p),

R 1+ p2° p2E?
where
(1.13) O(p) == —p / ;i_wp(f; dg§.
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Solving for A we find,

(1.14) A=—(1—-aB(p)).

3 | =

~

Observe that since is real, then)(¢) = ¢)(—¢) and therefor@®(p) € R for all
p > 0. This readily implies thah € R and, upon substitution in.(11), that

L(1 - a8(p))? + 0T (p).

™

(1.15) Thin =

The latter expression is a real quadratic polynomiakig R. Minimizing over«
we get

- O(p)
(1.16) = 1 60 cR

Thus, we can substituté (L6) in (1.15), obtaining in this fashion the lower bound

I'(p)
7L'(p) + O(p)

Remarkl. The choice {.16) corresponds to taking = f@g@@dg € R, as the
reader may easi!y verify using (L0. Intuitively, the most we can do with in (1.8)
is to remove the)-component ofi. In other words, if we minimizgju, — av||.»

overa we obtaina = [wu,pdr/ [¢*de = [icanpd¢ (recall ¢ 2 = 1). We can

jrﬁin 2 I(p) = 2 > 0.

substitute its value in the expression of the minimizer to compute the lower bound

Z(p).

We do not need to show that.(L0) is the actual minimizer. The variational for-
mulation simply helps us to compute a lower bound for the functional in terms of

Sobolev-Type Inequality
Ramoén G. Plaza

vol. 8, iss. 1, art. 2, 2007

Title Page
Contents
44 44
< 14
Page 8 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au

p. Next, we study the behavior &¥(p) andI'(p) for all p > 0. We are particularly
interested in what happens for largeln addition, we have to prove that the lower
bound is uniform iny € R if we substitutey(-) by (- + y), a property that was
required in the proof of Propositiah 3.

Lemma 1.4. There holds

(i) T'(p) € R* forall p > 0 and it is invariant under translation(-) — ¥ (- + y)

Sobolev-Type Inequality

foranyy € R, .
Ramoén G. Plaza
(i) C~1p <T(p) < Cpforp~ 0F, and some& > 0, vol. 8, iss. 1, art. 2, 2007
(i) T(p) — 7M? asp — +oo,
(iv) ©(p) < Cp?for p ~ 0T, and Jte Fage
(v) ©(p) is uniformly bounded under translatiaf-) — (- + y) withy € R, as Contents
p — +oo. <« "
Proof. (i) is obvious, agy(- + y)(€)] = |e€vd ()| = [b(€)]; also by (1), itis clear < >
thatI'(p) > 0, for all p > 0. Page 9 of 26
(ii) follows directly fromT'(p) < p [ |1b|2dé = pfor all p > 0, because of1(6), and Go Back
from noticing that
|QZJ(C/ )|2 Full Screen
p
I(p) = . W dg Close
= + / journal of inequalities
¢I<1 I¢|>1 in pure and applied

mathematics

|

1 - p -
> — 2d¢ == 2 d¢. issn: 1443-575k
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Since||v ||z = 1, we have forp sufficiently small,

GRS
§l<1/p

and thus(p) > 1p = C'pfor p ~ 07,

(iii) to prove (i), notice thaqw| is boundedw(C/p) (0) asp — —+oo pointwise,
and(¢* + 1)~ is integrable; therefore we clearly have

|¢QM2 W F

L(p) = e

asp — +oo.

7 d¢ = (0)F = wM? > 0,

(iv) follows directly from hypothesisl(.?), as
()]
G} <
LI Sy
Note that this estimate is valid also by translation, even thatght+ y) may not
satisfy (L.2).

(v) in order to prove (v), we first assume thaitself satisfies {.1) and (L.2). Split
the integral into two parts,

O(p) = — JﬁﬁLd— %W@ci I + I,
(p) /|g<152+1/p2 3 /§>1€ ‘|—1/P E=L+1

I, is clearly bounded as — +oc by hypothesis1.2),

&9
|12|§/€>15+—1/2 i< [woresc

Lde<p /rw )| de < Cp?.
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J
Denote ||\v M

~

£(W(&) = 9(0) fore #0, 7o
o6) =1 . :
2(0) for& =0. P A
¢ is continuous. Thenl; can be further decomposed into
, i€ d§ i€ (€) .
I, = —¢(0 - df — — 27 €. Sobolev-Type Inequality
' w( ) /;|§1 52 + 1/p2 5 /|§§1 52 + 1/02 6 bRamc’mpG. PI:za

The first integral is clearly zero for gl > 0, and the second is clearly bounded as vol- 8. ss. 1. art 2, 2007

2
/ g ’¢(€)’2 df < / |¢(§)| df <C. Title Page
<1 &+ 1/p gl<1
Contents
Therefore©(p) is bounded ag — +oc.
Now, let us suppose that(-) = v, (- + y) for some fixedy € R, y # 0, wherey), K L
satisfies {.1) and (L.2). Then clearly)(§) = e%¥4,(£) and < >
i€et€q (& Page 11 of 26
o) —— [ EEE) 4
R &+ 1/P Go Back
Assume thay > 0 (the casg/ < 0 is analogous); then consider the function | Savasn
izeizyQL (z) Close
9(z) = Tl;pg7
journal of inequalities
for z in Im z > 0, and take the upper contour in pure and applied
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for someR > 0 large. Themy(z) is analytic insideC except at the simple pole=
i/p. (Wheny < 0 one takes the lower contour that encloses the pote-at—i/p.)

By complex integration of; alongC in the counterclockwise direction, and by the

residue theorem, one gets

/g(z) dz = 2miRes.—;/, g(2) = —me Y (i/ p).
c

Therefore it is easy to see that the vatig) is uniformly bounded iny € R as
©(p)| < wldbo(i/p)| — w|M| >0

whenp — +oco. This completes the proof of the lemma.
Remark?. If we consider the solution” to

1

(1.17) —Ugy + U = Uy,
P

then, after taking Fourier transform, one finds

P (E) = 2@&#(5) ’
&+1/p?
so thatu”(0) = [4rd¢ = —O(p). The claim thaw’(0) is bounded ap — +oo is
plausible because in the limit (formally) we have? = i, or u? = —1. Sincey
is integrabley” should be bounded. The bou@dp) ~ e~¥I/? represents the (slow)
exponential decay of the Green'’s function solutionitd ().

In Lemmal.4, we have shown thab(p) andI'(p) are uniformly bounded fop
large and iny € R. The same applies tb(p). For p near0, since both tend to zero
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asp — 0%, by L'Hépital’s rule we get

because (i) implie$dl’ /dp),—o+ > C~' > 0, andd®/dp is bounded ap — 0T by
(iv).

Therefore, the constafitp) is uniformly bounded from above and below for all
p > 0, in particular forp — +o0. This implies the uniform boundedness from
below of 7. and of 7*[u] for all u in the constrained class of functions considered
in Theorem1.2. Furthermore, the lower bound is uniform by translation as well.
This completes the proog

Remark3. The corresponding Fouridr' estimate
lalle < Cllall lliga — adb]| 5,

(from which the result can be directly deduced), does not hold. Here it is a coun-
terexample: let) be a nonnegative function with compact support andlldte its
antiderivative. Set

u(z) ==V (z) — ¥(z/L),

whereL > 0 is large. Then there i® > 0 such thatu vanishes outsidér| <
RL. Henceforth||u||;: < CL for someC > 0. Moreover, we also have, —
¥ = 9(z)/L, and consequentlju, — ¢||;2 < C/L. This implies that the product
|u|| 2 ||ue — ]2 remains uniformly bounded ih. Now, the Fourier transform of
uis

2

a(€) = W(€) — LU(LE) :

(DL = (9)) -
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Since{b has compact support, it vanishes outsigle< R, for someR > 0. Now,
1(0)| = M > 0 implies that|/)(¢)| > 0 nearé = 0, and we can choosg suffi-
ciently large such that)(¢)| > ¢, for R/L < |¢| < 4,/2, whered, = sup {6 >
0; [¢(€)] > 0for0 < || < 8}, andcy is independent of.. Therefore

ey @]
()] 2T

forall R/L < |¢| < 6,/2, and theL! norm of behaves like

d
lalls > co / S~ L — oo,

R/L<le<s. /2 €]

asL — +oo.
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2. Applications to Viscous Shock Waves

To illustrate an application of uniform inequality.(), consider a scalar conservation
law with second order viscosity,

(2.1) up + f(U)e = Uge,

where(z,t) € R x [0, +00), f is smooth, and” > a > 0 (convex mode). Assume
the triple (u_,uy, s) (with uy < w_) is a classical shock frong] satisfying the
Rankine-Hugoniot jump condition-s[u] + [f(u)] = 0, and Lax entropy condition
fl(uy) < s < f'(u_). A shock profile ] is a traveling wave solution to?(1) of
form u(z,t) = u(x — st), whereu satisfiesu” = f(u), — su/, with’ = d/dz,

z = x — st, andu — uy asz — too. Without loss of generality we can assume
s = 0 by normalizingf (see e. g.3]), so thatf(u+) =0, f'(uy) <0 < f'(u_) and
the profile equation becomes

(2.2) i, = (7).

Such a profile solution exists, and under the assumptions, it is both mongtené
and exponentially decaying up to two derivatives

0 () — us)| S e,

forall 0 < j < 2 and some constant> 0 (see [, 8, 1] and the references therein)
We will show that the following consequence of Theorémis useful to obtain
decay rates for solutions to the linearized equations for the perturbed problem.

Lemma 2.1. Letu be the shock profile solution {@.2). Then

(2.3) lullee < Nullzellue — oty 22,

IHere[g] denotes the jump(u+) — g(u—) for anyg.
?In the sequel <" means “<” modulo a harmless positive constant.

Sobolev-Type Inequality
Ramoén G. Plaza

vol. 8, iss. 1, art. 2, 2007

Title Page
Contents
44 44
< 14
Page 15 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au

forallu € H'(R) and alla € R.

Proof. Follows immediately from Theorem.1 with ) = u,, which satisfies hy-
potheses(.1) and (L.2), asu, is exponentially decaying and has non-zero integral

[u] #0. 1

Consider a solution ta(1) of the formu + u, u being a perturbation; linearizing
the resulting equation around the profile we obtain

(24) Uy = Lu = Ugy — (f/(ﬂ)u)xv

wherelL is a densely defined linear operator in, s&¥, In [4], Goodman introduced
theflux transformr : W? — LP, whereFu := u,, — f'(u)u, as a way to cure the
negative sign off” (u)u, < 0. Thatis, ifu solves £.4) then clearly its flux variable
v := Fu satisfies the “integrated” equatio®||

(2.5) up = Lu = Upp — f(U)u,,

which leads to better energy estimates. Another feature of the flux transform formu-
lation is the following inequality (see!] for details, or p] — Chapter 4, Proposition
4.6 — for the proof).

Lemma 2.2 (Poincaré-type inequality). There exists a constaxit > 0 such that
forall 1 <p < +ooandu € L,

(2.6) |lw — dty||Le < C||FullLe,
wherej is given by
(2.7) o= %/Ruﬂm dz,

andZ = [, u2dx > 0 is a constant.
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Here we illustrate an application of the uniform estimaied)(to obtain sharp
decay rates for solutions to the linearized perturbation equation, using the flux for-
mulation due to Goodman.

Proposition 2.3 (Goodman f]). For all global solutions tou; = Lu, with suitable
initial conditions, there holds

(2.8) lu(t) = 6()ae | e S 2]|u(0)[lwrs,
whered () is given by(2.7).

Remark4. This is a linear stability result with a sharp decay rate (the pewé? is

that of the heat equation, and therefore, optimal). Notice alsojthatiepends on

t, corresponding (at least at this linear level) to an instantaneous projection onto the
manifold spanned by. The need of a uniform inequality for alle R such asZ.3)

is thus clear. For a very comprehensive discussion on (nonlinear) “wave tracking”
and stronger results, see Zumbr@h [

Remarks. The formal adjoint of the integrated operator is given by
LU = Uy + (f (W)u),.
Note that ifv andw are solutions t@; = Lv andw; = —L*w, respectively, then

d

& [t e - [weo = vtrw)dz =0,

R
and hence

/Rv(t)w(t) dr = /Rv(O)w(O) dx, forall t>0.
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solutions to the linear equations, or the correct assumptions for initial conditions in
suitable spaces (which are standard and can be found elsegh8}e &nd concen-
trate on filling out the details of the proof of Propositiars sketched in4].
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2.1. Energy Estimates
We start with the basic energy estimate.

Lemma 2.4. Let v be a solution to eithew; = Lv or v, = L*v. Then for all
t > s > 0 we have the basic energy estimate

d
@9) Gl < a0l — 5 [ @l s <o
and,
(2.10) lo(6) 3 < (o).
! 2 1 2
(2.11) [ el dr < St
(2.12) | [ 7@l dedr < o(s)

Proof. Follows by standard arguments. Multiply = Lv by v and integrate by
parts once to get2(9). Likewise, multiplyv, = L£*v by v and integrate by parts
twice to arrive at the same estimate. The negative sigi.i#) {s a consequence of
compressivity of the wave” (u)u, < 0. Estimates.10 — (2.12) follow directly
from (2.9). »

Next, we establish decay rates fgrandw, and solutions te;, = Lv andw; =
L*w.

Lemma 2.5. Letwv be a solution ta;, = Lv. Then the following decay rate holds

(2.13) loe@)llz2 < 2 0(0)]] 2.
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Proof. First observe that, = Fv,, and therefore,, = (Fv,); = Fu,, = Luy, that
is, v; solves the integrated equation as well, and hence, the estimales (2.12)
hold for v, also. In particular, the.? norm of v, is decreasing. To show? (19 it
suffices to prove

(2.14) loe)z2 < Noa(s)lIZ2,
forallt > s+ 1,s > 0. Integrate £.14) in s € [0, — 1] and use¥.11]) to obtain

t
le(®)IIZ2 < (¢ = 1)_1/0 lva ()22 ds < (t = D) w072 <t {[o(0)Z:,

for all t > 2, yielding (2.19. To show ¢.14) differentiatev; = Lu with respect to
x, multiply by v,, and integrate by parts to obtain

1d 1 _
@15) 5 leaOlE = ~loaa(Ols — 5 [ Fla)odde < MOl
R
whereM := sup |f'(u),|. By Gronwall’'s inequality
(2.16) lva(T + )72 < e [loa(T) 172,

forall¢,7 > 0. Integrating .15 int € [s, T1,

T
(217) oo (T)IIZ2 < llva(s)]1Z2 —/ Ve (7)II72 dr

—% / ' /R F1(@) oo (1)? dadr.
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Upon substitution in4.17),

T
/ [vsa (T)I72 d7 < 5(1+ €M) [lug(s) 7.

Likewise, from @.16) it is easy to show that

[ [ 1@l dnr < S T )

wherem := sup|f’(u)|. Denotingu(t) := max {1(1 + M), M}, we see that

both . T
/Hmm%m,md/ ﬁﬂwwﬁmm
s s R

are bounded by/(T—s)||v,(s)||3.. Since theL? norm ofv, is decreasing, integrating
inequality .10 for v; we obtain

@—wmn@sfummmm
Zt/ﬁlKLv)ﬁﬁﬂisz

T T
S [ Moaedr+ [ [ 17 @) dadr
s s R
S (T = 8)|lva(s) 22
Choos€l’ — s = 1 to finally arrive at
loe @172 < o(X + )72 S p(D)floa(s)I72,
forallt > 1 + s, establishing4.14). This proves the lemma.
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Lemma 2.6. Letw be a solution tav;, = L*w. Then the following decay rate holds

(2.18) o)l <t [w(0)] 2.

Proof. Recall that £.9) — (2.12) hold forw. In particular, by convexity” > a > 0
and ¢.129), we have

t
(2.19) / / |ﬂz]w(7')2 dedr < CL_IHuJ(O)H%Q7 Sobolev-Type Inequality
0 R

Ramoén G. Plaza

for all ¢t > 0. Differentiatew, = £*w with respect tac, multiply by w, and integrate vol. 8, iss. 1, art. 2, 2007

by parts to obtain, for all > 0,

1d ) ) 3 ) 1 ) Title Page
_ - "=\ _ = ! (=

gl O = e Ol =5 [ @l 0 do = [ 7@ mnte) de —

The first two terms on the right hand side have the right sign for decay. We must <« >

control the term- [ f'(@),.,w? dz. For that purpose, use the equationdoand the

profile equation to compute N 0
Page 21 of 26
" 2

2dt / [ (?) / [ 102 (2) /f it " ) Go Back
This provides the cancellation we need, as the decredsingorm we seek will Full Screen
be that ofw, plus a multiple of|u,|"/?w. First note by the smoothness gfand S
convexity that there existd > 0 such that
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This implies

d (1 1
— | =[lw,(®)|? +—Aa1/amwt2d:c>
i (G012 + 340 [t

3 1
=Ml =5 [ P @l de =5 [ @) dos

. Aal/ ’ﬂx|wx (t)2 dl‘ . Aail / f//(ﬂ)|ﬂx’2w(t)2 da: Sobolev-Type Inequality
R R Ramon G. Plaza
A vol. 8, iss. 1, art.
< J(t)——/ |ﬂx|2w(t)2dx, I. 8, iss. 1, art. 2, 2007
2 Jr
where Title Page
3
IO i= ~wn @ - 5 [ @0 - A [ jufu0fde <o e
R R <« >
for all t > 0. DenotingA = Aa~! and defining p >
R(t) := ||w$(t)||2L2 + [1/ |t |w(t)? dz, Page 22 of 26
® Go Back

we have thus shown thét(¢) is the decaying norm we were looking for,&8/dt <
0. IntegratingR(t) < R(7) according to custom with respecttoc [0, ¢], for fixed Pl e
t > 0,and using?.11) and .19, one can estimate
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W
for all ¢ > 0 large. By the classical Sobolev inequality agdL() we obtain I M

S
1/2 1/2 _
lw(®)||pee S Jlwa (@) w5 S Y4 w(0)]] 2, L

as claimedyp IP A

2.2. Proof of Proposition 2.3

. . . bolev- li
If u solvesu; = Lu, then its flux transformy = Fu is a solution tay, = Lv. Apply Sopolev-Type Inequally

the uniform Sobolev-type inequality (3) to v, substituting « by

o(t) = %/va(t)ux dz,
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(with Z = [ |4, |* dz), and the Poincaré-type inequaliy. §) (with p = 2), to obtain T(:;:?:
o) e S 0@l 2 llow — 5(t)e 22 ——
S @2l (Foe) (@)l 2 = [[o()]] 22 [|ve(@) || 2
Then, using the estimaté (L9, we arrive at ¢ g
(2.20) [l S (= )7 u(s)]3. el
forall t > s + 2. For fixedT > 0 define the linear functional : L? — R as Go Back
Full Screen
Ag = /RU(T)Q dx, o

for all g € L?, with norm _ . »
journal of inequalities
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lgll L2=1

/R o(T)g da

SHere the uniformity of inequalityZ.3) in o € R plays a crucial role.
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For everyg € L* with ||g||.= = 1, we can always solve the equation= —L*w =
—wye — (f'()w), ont € [0,T] “backwards” in time, withw(T") = ¢. Thus, by
Remarks

/RU(T)gd:U

for all T > 0. Making the change of variables(z, t) = w(z, T — t) we readily see
thatw satisfiest, = L£*w with w(0) = ¢, and we can use estimate {9, yielding

/R o(T)e(T) dz

/RU(O)w(O) dx

< [lo(O) |zt [lw(0)]| =,

[w(0) |z = [@(T) |z < T *|lg]| 22

Thus,

[o(T)][z2 = sup < Oz w(©) = < T4 0(0) 11,

lgllp2=1

/R o(T)g dx

forall T > 0. Chooses = ¢/2 in (2.20), and apply the last estimate with= ¢/2,
to get
(2.21) lo()llz <

~Y

(t/2)" lo(t/2) 12 S 2 [0(0)] 1,

which corresponds to the optimal decay rate for solutions to the integrated equation.

To prove the decay rate ©) for the original solution to the unintegrated equation
uy = Lu, apply the Poincaré-type inequality again (now with- oo) together with
(2.21),

lu(t) = 6() el < o)z~ S 72 [0(0)llzr S 72 [[u(0)]|wr.

This completes the proof. O

Sobolev-Type Inequality
Ramoén G. Plaza

vol. 8, iss. 1, art. 2, 2007

Title Page
Contents
44 44
< 14
Page 24 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au

Acknowledgements

The motivation to prove inequalityl (3) originated during my research on viscous
shock waves towards my doctoral dissertatiép {vritten under the direction of
Prof. Jonathan Goodman. | thank him for many illuminating discussions, useful
observations, and his encouragement. | am also grateful to Prof. Stefan Mdiller for
suggesting the counterexample in Remark

Sobolev-Type Inequality
Ramoén G. Plaza

vol. 8, iss. 1, art. 2, 2007

Title Page
Contents
44 44
< 14
Page 25 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au

References

[1] I.M. GELFAND, Some problems in the theory of quasi-linear equatignser.
Math. Soc. Trans].292) (1963), 295-381.

[2] J. GOODMAN, Nonlinear asymptotic stability of viscous shock profiles for
conservation lawsArch. Rational Mech. Angl.95(1986), 325-344.

[3] J. GOODMAN, Stability of viscous scalar shock fronts in several dimensions,
Trans. Amer. Math. Soc311(2) (1989), 683—695.

[4] J. GOODMAN, Remarks on the stability of viscous shock waves/istous
Profiles and Numerical Methods for Shock Wawvieks Shearer, ed., SIAM,
Philadelphia, PA, 1991, 66-72.

[5] P.D. LAX, Hyperbolic systems of conservation laws @Gpmm. Pure Appl.
Math. 10(1957), 537-566.

[6] R.G. PLAZA, On the Stability of Shock ProfilePhD thesis, New York Uni-
versity, 2003.

[7] D. SERRE,Systems of Conservation Laws 1: Hyperbolicity, entropies, shock
waves Cambridge University Press, 1999.

[8] J. SMOLLER, Shock Waves and Reaction-Diffusion Equatjio8gringer-
Verlag, New York, Second ed., 1994.

[9] K. ZUMBRUN, Refined wave-tracking and nonlinear stability of viscous Lax
shocksMethods Appl. Anal.7(4) (2000), 747-768.

Sobolev-Type Inequality
Ramoén G. Plaza

vol. 8, iss. 1, art. 2, 2007

Title Page
Contents
44 44
< >
Page 26 of 26
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:plaza@mym.iimas.unam.mx
http://jipam.vu.edu.au

	The Inequality
	Proof of Theorem 1.2

	Applications to Viscous Shock Waves
	Energy Estimates
	Proof of Proposition 2.3


