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Let p(z) be a hyperbolic polynomial-like function of the forpfz) = (z —

r1)™ o (x—rn)™N, wheremg, ..., my are given positive real numbers and

r < re<---<rny. Letz; < zy < --- < zy_1 be theN — 1 critical

points ofp lying in I = (rg,re+1),k = 1,2,..., N — 1. Define the ratios

o = =Tk k= 1,2,...,N — 1. We prove that—"t—— < g, <
Th+1—Tk mp -+ tmy

_mittme  These bounds generalize the bounds given by earlier authors for
'm1+m+7nk+1

strictly hyperbolic polynomials of degree For N = 3, we find necessary and
sufficient conditions fofo1, o) to be a ratio vector. We also find necessary and
sufficient conditions omny, ms, ms which imply thato; < o2. ForN = 4, we

also give necessary and sufficient conditions(fer, o2, 03) to be a ratio vector
and we simplify some of the proofs given in an earlier paper of the author on
ratio vectors of fourth degree polynomials. Finally we discuss the monotonicity
of the ratios whenV = 4.
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1. Introduction and Main Results

If p(z) is a polynomial of degree > 2 with n distinct real roots; < ro < --- <r,
and critical pointse; < x9 < -+ < x,_1, let

T — Tk
Op = ———
Tk4+1 — Tk
(01,...,0,_1) Is called theatio vectorof p, andoy, is called thetth ratio. Ratio
vectors were first discussed ] [and in [1], where the inequalities

1 k
n—k+1<ak<k+1’ k=1,2,...
were derived. Fon = 3 it was shown in ] that o; ando, satisfy the polynomial
equation3(1 — o1)os — 1 = 0. In addition, necessary and sufficient conditions
were given in §] for (o, 0,) to be a ratio vector. Forn = 4, a polynomial,@,
in three variables was given ib][ with the property that) (o4, 09,03) = 0 for
any ratio vector(oy, oy, 03). It was also shown that the ratios are monotonic—that
is, 01 < 09 < o3 for any ratio vector(oy, 0y, 03). Forn = 3, § <o < %and
% < 09 < % and thus it follows immediately that; < o,. The monotonicity
of the ratios does not hold in general for> 5 (see p]). Further results on ratio
vectors forn = 4 were proved by the author iG]l In particular, necessary and
sufficient conditions were given f@p, 02, 03) to be a ratio vector. For a discussion
of complex ratio vectors for the case= 3, see J].

We now want to extend the notion of ratio vector to hyperbolic polynomial-like

functions (HPLF) of the form
plw) = (@ =)™

wheremy, ..., my are given positive real numbers Wl‘ﬂj]kvzl my =nandrq,...,ry
are real numbers with; < r, < --- < ry. See B] and the references therein for

k=1,2,...,n—1.

(x—ry)TN

Y
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much more about HPLFs. We extend some of the results and simplify some of the
proofs in B] and in [6], and we prove some new results as well. In particular, we
derive more general bounds on thg(Theoreml.2). Even forN = 3 or N = 4,

the monotonicity of the ratios does not hold in general for all positive real numbers
my,...,my. We provide examples below and we also derive necessary and suffi-
cient conditions onny, msy, ms for oy < o, (Theoreml.4). In order to define the
ratios for HPLFs, we need the following lemma.

Lemma 1.1. p’ has exactly one root;;, € I, = (rg,7%4+1), k=1,2,..., N — 1.

Proof. By Rolle’s Theoremp’ has at least one root ify foreachk = 1,2,... , N—1.
Now Z = SV ™ which has at mosV — 1 real roots since[ 1 } is a
P T—T =% ) g=1,..,N
Chebyshev system. O

Now we define theV — 1 ratios
(1.1) op= kTR k12, N-1
Tk+1 — Tk
(01,...,0n-1) Is called theratio vectorof p.

We now state our first main result, inequalities for the ratios defined. i. (

Theorem 1.2.1f o4, ...,0n_; are defined by1(.1), then

my my+ -+ myg

(1.2)
mg+ -+ my my+ -+ M

Remarkl. Well after this paper was written and while this paper was being con-
sidered for publication, the paper of Melma®| pppeared. Theorem 2 o9 is
essentially Theorem.2 of this paper for the case when the, are all nonnegative
integers.
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Most of the rest of our results are for the special cases whea 3 or N = 4.
For N = 3 we give necessary and sufficient conditionsrmon ms, ms for (oy, o9)
to be a ratio vector. The following theorem generaliz&$ Theorem 1). Note that
n =mj + mso + ms.

Theorem 1.3.Letp(z) = (x — rl)ml (x — rg)m (x —r3)™s. Then(oy, o) is a ratio
vector if and only if”t < o < < 09 < m1+m2 , andoy =

m1 +T)’L2’ mg-l-m?, ﬁ'

We now state some results about the monotonicity of the ratios Wwhen3. For
my = my = my = 1, Theoreml.2yields; < oy < ;and; < o, < 2, and thus it
follows immediately that; < 05. 01 < 0, does not hold in general for all positive
real numbers(or even positive integers), m,, andms. For example, ifm; = 2,
mo = 1, mz = 3, then it is not hard to show that, < o, for all r; < r, < r3(see
the example in & below). Also, ifm; = 4, my = 3, andmgs = 6, theno; < o5 for
certainr, < ry < r3, While oy < o, for otherr; < ry, < r3. For

1 1 0
p(x) =a*(z —1) (x + 5 2\/ 13> , 01=02=5 = 5 13.

One can easily derivaufficient conditions onn, mg, ms Which imply thato; < o
for all 7, < ry < rs3. For example, ifnyms < m32, then — ml < m;{fms which
implies thatr; < o5 by (1.2) with N = 3(see £.6) in § 2). Also if my+ms < 3ma,
thenn < 4msy, which implies that

mo > 1
n(l—o1) 41 —oy)

09 = > 01

since4z(1 — x) < 1 for all realz. We shall now derive necessary and sufficient
conditions onmy, ms, ms for o; < os.
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Theorem 1.4.0, < oy forall r; < ry < r3if and only ifm32 + my(my —ms3) > 0
and one of the following holds:

(1.3)  mi+my(my+mz)—2mmz >0 and  mj + ms(mg —my) >0

or

(1.4) m3 +mg (my +ms) —2myms <0 and  3my — my —ms > 0.

As noted above, ifn; = my = m3 = 1, theno; < o,. The following corollary
is a slight generalization of that and follows immediately from Theoiefn

Corollary 1.5. Suppose thatn; = my = mg = m > 0. Theno; < o, for all
ry < rqo <rs.

For N = 4 we now give necessary and sufficient conditionsonms, ms, my
for (04, 09, 03) to be aratio vector. Note that= m; + ms + ms + my4. To simplify
the notation, we use; = u,0o = v,andos = w for the ratios. The following
theorem generalizesq], Theorem 3).

Theorem 1.6. Let

n(w —v) —ms n(l—w)—my

D = D(u,v,w) = nu—1v(l—-—w) n(u—1)vw+mg |’

Dy = Dy(u,v,w) = (nu—my) (mg —nvw (1 —u)),
Dy = Dy(u,v,w) = (nu—mq)nv (1 —u) (1 —w),

R = R(u,v,w)

nv(l—w) D2+ (nvw—m1—ma) D1 Da+(n(1—u) (w—v—1)+ma+my4) D1 D+(nw(u—1)+mao+ms) Do D
(nu—m1)(ma—nv(l—u)) )
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which is a polynomial inz, v, and w of degree7. Then(u,v,w) € R3 is a ratio
vector of
p(x) = (x =)™ (x = ry)"(x —rs)"™ (2 — ra)™

if and only if0 < Dy (u,v,w) < Dy(u,v,w), D(u,v,w) > 0, and R(u, v, w) = 0.

We now state a sufficiency result about the monotonicity of the ratios \ihen
4. We do not derive necessary and sufficient conditions in general om,, ms, my
for oy < 09 < 0o3.

Theorem 1.7. Suppose thatn; + my < min {3ms — ms,3ms — my}. Theno; <
o9 < 03.

As with N = 3, we have the following generalization of the case when=
mo = ms = my = 1, which follows immediately from Theorem7

Corollary 1.8. Suppose thatr; = my = m3z = my = m > 0. Theno; < 03 < 03.
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2. Proofs

We shall derive a system of nonlinear equations in{thg and{o,} using (L.1).
Let

p(x) = (@ —r)™ - (z — ry)™

wheremy, ..., my are given positive real numbers w@]kvzl mp =nandry,...,ry
are real numbers with; < r, < --- < ry. By the product rule,

p@)=(z—r)™ o (x—ry)™ Z (mj H (x — Ti)) .

Y

=1 i=1,ij
Since
N—1
p@)=n(z—r)™ - (z—ry)™ ! x H(x—xk.)
k=1

as well, we have

N-1 N N
(2.1) n H(x —Tp) = Z (mj H (x — 7"2)) :
k=1 j=1 i=1,i#j
Letey = ex(ry,...,7N) denote theith elementary symmetric function of the,
Jj=1,2,... N, starting witheg(ry,...,7n) = 1, e1(r1,...,ry) =11+ -+ +7n,
and so on. Let

ek (1, TN) = ex(r1, . Tj_1,Tjs1, - s TN),

thatis,e (71, ..., ry) equalse,(ry, ..., rx) with r; removedy = 1,..., N. Since
p(z + ¢) andp(x) have the same ratio vectors for any constgarwe may assume
that

o = 0.

Ratio Vectors of
Polynomial-Like Functions

Alan Horwitz

vol. 9, iss. 3, art. 76, 2008

Title Page
Contents
44 44
< >
Page 8 of 21
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:alh4@psu.edu
http://jipam.vu.edu.au

Equating coefficients inA 1) using the elementary symmetric functions yields

N
neg(Ti,...,ty_1) = E mjegi(r1,0,73,...,7N), k=1,2,...,N —1.
j=1

Since
e . Ratio Vectors of
€k,j (7“1, LTI 7TN) If j 7& 2andk < N — 2; Polynomial-Like Functions
ek,j(Tlaoar?n"'arN) = ek(rlar?)w"vr]v) Ifj :2’ Alan Horwitz
0 if j #2andk = N —1, vol. 9, iss. 3, art. 76, 2008
we have
neg(xy, ..., xn_1) = moek(r1,73, ..., TN) Title Page
N Contents
+Z mjek,j(rl,rg,...,rN), k:L,N—Q <« >
J=1.57#2
(2.2) NTy -+ TN_1 = Mal1T3 - TN. < 4
Solving (1.1) for z;, yields Page 9 of 21
(23) xk:Akak+7"k, k= 1,2,...,N—1, EDIEEES
whereA, = r,.1 — rx. Substituting 2.3) into (2.2) gives the following equivalent Full Screen
system of equations involving the roots and the ratios. Close
(24) nek((l — 0'1)7“1, r309, A30'3 + 73, ... ,AN_laN_l + TN—I) journal of inequalities
N in pure and applied
= moex(ri,r3, ..., n) + Z mjegi(ri,rs,....,rn), k=1,...,N—2, mathematics
J=1,j#2 issn: 1443-575k
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n(l—0'1)T17’30'2(A30'3+7’3)"'<AN 1O'N_1+7‘N 1) = MoriTrg---TN.

Critical in proving the inequalitles— < o <

P, was the root—dragging

k 1

theorem (see?]). First we generalize the root—dragglng theorem. The proof is very

similar to the proof in 2] wherem; = --- = my = 1. For completeness, we
provide the details here.

Lemma 2.1. Letz; < x5 < --- < xny_; be theN — 1 critical points ofp lying
inI = (rg,me21), k = 1,2,...,N — 1. Letg(z) = (z —r))™ -+ (z — 7ly)™,
wherer;, > ri, k=1,2,...,N —1landletz] <z, < --- < zfy_, betheN — 1
critical points ofq lying in Ji, = (r},,7.,1), k = 1,2,..., N — 1. Thenzj, > xy,
k=1,2,...,N—1.

Proof. Suppose that for somez, < z;. Now

N

N
my
(z;) =0= =0 and =

. > 1, andz; < x; implies that
(2.5) ri—r, <xi—re, k=1,2,...,N—1

Since both sides of’(5) have the same sign,

mi. mi
> . k=1,2,...,N—1,
T, — T Ti — Tk

which contradicts the fact that ., - andz,‘C Ty T are both zero. O

Proof of Theoreni.2. To obtain an upper bound fot, we use Lemma.1. Arguing
as in [1], we can move the critical point, € (7, 7x+1) as far to the right as possible
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by lettingry,...,rx—1 — rp andryia,...,rny — o0o. Lets = my + -+ + my,
t=myo+ -+ my,andlet

@(x) = (= 73)° (2 — rpgr) ™ (= b)".
Then
(&) = (@ = 10)° [0 = P18 — B g (@ — 7)™ — )]
+s(x — 1) @ — rpgr) ™ (2 — )

= (z = )™ Nz = 1) (@ — b))

X [t(x — rpg1)(x — 1) + mpgr (x — 1) (x — b) + s(x — r1) (z — b))

xy, IS the smallest root of the quadratic polynomial

t(x —ris1) (@ — rg) + mpgr(x — rg)(x —0) + s(x — rpyq)(x — b)
= (Mpy1 +t+8) 2%+ (—trppr — try — Mpy1Th — Mpg1b — ST — sb) @
+ trp1Tr + STh110 + My 17k

Asb — oo, r, increases and approaches the rodtofi, .1 — s)x+ s +mp 17
Thus

STk41 + Mi1Tk STk+1 + ME417k
x| =01 — 1% | /(Phg1 — 7T3)
Mpy1 + S Mp41 + S

STk41 + Mp17k — Tk(ME11 + 5)

(Miey1 + 8) (e — 1)
- S _omy e My

Mp1 +S My 4+ Mgy

Similarly, to obtain a lower bound far,, move the critical point;, € (ry, ri.1) @s
far to the left as possible by letting .5, ..., 7y — rgyq @andry, ..., 1,1 — —o00.
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By considering
@) = (x = 73)™ (2 — r341) (2 + b)',
wheres = my, 1+ -+ - +my andt = my + - - - +my_1, ONE obtaing;, | Dk

mg+-+mpy "

Proof of Theoreni.3. Letn = m; + my + mg3. TO prove the necessity part, from

Theoreml.2with N = 3 we have
(2.6) Mgy _ M2 Mt my
n my + Mo Mo + M3

With N = 3, (2.4) becomes
(2.7) n((1 —o1)r1 +1r302) = ma (r1 +13) + mars + mgry,
n(l — 0'1)T1<7’30'2) = MoT1T3.

Sincer; # 0 # r3, the second equation i ¢) immediately implies that (1 —
01)0'2 = mMy.
To prove sufficiency, suppose that;, o) is any ordered pair of real numbers

with o1 < oy < e ando, = ﬁ Letr = z—mi— and letp(x) =
(x + 1)™az™(z —r)™s. Note that- > 0 sinceno; —m; > 0 and
mg
mi+ Mo —NO2 =M + Mg — N———
n(l —oy)
_ 01 (m1 +m2) —mq
-1 +01
_ M — o1 (my + moy) < 0.
1-— 01
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A simple computation shows that the critical pointspoin (—1,0) and in (0, r),
respectively, are; = o1 — 1 and

o mo o1(mg +m3) + (o1 — 1) my
2 mi1 + ma + m3 (my +mg) oy —my .
Thus the ratios op arez; + 1 = o, and 2 = n(l"i?gl) = 0,. That finishes the proof
of Theorem1.3. O

Proof of Theorenm..4. Sincep(cx) andp(z) have the same ratios when> 0, in
addition tor; = 0, we may also assume that= 1. Thusp(z) = 2™ (v — 1) (z —
r)™s r > 1. A simple computation shows that

1
o= ((n —mg)r —n —mg — VA(r)) +1,
% <(n —m3)r —n —msg + \/A(T))
72 = r—1 ’
where
A(r) = (my + m2)2r2 + 2(mams — myn)r + (mq + mg)z.
Let

f(’f’) = (n_m3) 7"2—{— (_n+2m3 —mg)r+2m2.

Note thatf (1) = me+ms > 0, f'(1) = my;+mgs > 0, andf " (r) = 2me+2m; > 0,
which implies thatf () > 0 whenr > 1. Now

%((n—mg)r—n—mg—l—\/M)

09 — 01 =
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ry/A(r) — f(r)

2n(r—1)

oy — o1 > 0 when

r>1 < VAr> f(r)
= Ar’ > ((n—ms)r* + (—n+ 2m; —mg)r+2m2)2
<~ 4(r—1) ((m% +mime — mlmg) r? + (m2m3 — mimey — mg) r +m§) >0
< h(r)>0

whenr > 1, where
h(?“) = (mg + ml(m2 - ms)) r? + mo (mg — My — ml) T+ mg

We want to determine necessary and sufficient conditions.gmn,, ms which
imply thath(r) > 0 for all » > 1. A necessary condition is clearly

(2.8) m3 + my(my —mg) > 0,
so we assume that () holds. Let

’ _1m mi + Mo — M3
0 — {2
2 m%—l—ml(mz—mg)

be the unique root of/. If ry < 1, then it is necessary and sufficient to have
h(1) > 0. If ro > 1, then it is necessary and sufficient to have,) > 0. Now

rg <1 < 2(m§+m1(m2—m3)) > mgy (mg +my — mg3)
<= m3+my (my +ms) — 2myms > 0,
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and
h(1) >0 <= m3+ms(my —my) > 0.
That proves 1.9). If
mg + mo (m1 + mg) — 2m1m3 < O,

thenry > 1. Itis then necessary and sufficient that

1 3mg — my — mg
h = —m?> >0 <= 3my—my—ms > 0.
(”’0) 47”2 (m1 + mg + m3) m% T ml(mg — m3) Mo—1M1—M3
That proves 1.4). O

One can also easily derive necessary and sufficient conditions o, m3 for
o9 < o1. We simply cite an example here that shows that this is possible.
Example2.1 Letm; = 2, my = 1, m3 = 3. As noted above, we may assume that
p(z) = 2*(x — 1)(z — r)*, r > 1. Then a simple computation shows that
2
o = %+%T—1—12\/25— 18r + 9r2 and 09 = 3T_7+\/2152_ 18r 4 9r .
Simplifying yields

—3r2+r—2+1rv25 — 18 + 9r2
120 — 1) '

09 — 01 =

02—0'1<O,

r>1 <= rvV25 - 18+ 92 < 3r? —r +2
— (32 —r+2)°—r?(25-18r +9r%) >0
— 4(r—1)(3r*=1) > 0.
Henceoy < o forall r > 1.
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Remark2. For the example above, if we choose- 2, then the roots arequispaced
buto, < oy. Contrast this with §, Theorem 6]), where it was shown that for any
N > 3,if my =--- =my = 1 and the roots arequispacegdthen the ratios op are
increasing

We now discuss the cageé = 4, so thath = m; + ms + ms + my. Theoreml.2
then yields
m
_1 < u < L)
n my + Mo
mo ma + mo

(2.9) <v < )
m2—|—m3+m4 m1+m2+m3

ms my + Mo + M3
—<<w < .
ms + my n

In [6] necessary and sufficient conditions were given(tar, 01, 03) to be a ratio
vector whenm; = my; = m3 = 1. We now give a simpler proof than that given in
[6] which also generalizes to any positive real numbegsm,, andms. The proof
here forN = 4 does not require the use of Groebner bases &.in [

Proof of Theorem..6. (<= Suppose first thatu, v, w) is a ratio vector of
p(x) = (x =)™ (x — )™ (x —rs)™ (x —ry)™.

Sincep(z + ¢) andp(x) have the same ratio vectors for any consignive may
assume that, = 0, and thus the equations.{) hold with N = 4. In addition, since
p(cx) andp(z) have the same ratio vectors for any constant 0, we may also
assume that; = —1. Letrs = r andry = s, sothat) < r < s. Then €.4) becomes

(2.10) (n(w —v) —mg)r+ (n(l —w) —my)s = nu —my,
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(2.11) nv(1 —w)r® + (nvw —my — my) s
+(n(l—u)(w—v—1)+mg+my)r
+ (nw(u —1) + my +mg3) s =0,

(2.12) nv(u—1)(1—w)r+ (nvw(u—1)+mg)s=0.

Ratio Vectors of
Polynomial-Like Functions

In particular, .10 — (2.12 must be consistent. Eliminatingands from (2.10) and

(2.12) yields vol. 9, :S'a’;'*:ri"‘”?‘; 2008
(nv(u—1)(1—w) (n(l —w) —my) — (n(w—v) —m3) (nvw (u—1) +mg)) s
= (nu—mq)nv(u—1)(1 —w), Title Page
or Contents
D(u,v,w)s = (nu—my)nv (1 —u) (1 —w). <« >

Note thatiu—m; > 0,1—u > 0,v > 0, andl —w > 0 by (2.9). ThusD(u, v, w) >

< >
0 and by Cramer’s Rule,
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(2.13 and D(u,v,w) > 0 imply that D;(u,v,w) > 0, andr < s implies that
Dy (u,v,w) < Dy(u,v,w). Now substitute the expressions foands in (2.13) into
(2.11). Clearing denominators gives

(2.14) nv(1 —w)D3 + (nvw — my — my) D1 Dy
+(n(l—u)(w—v—1)+myo+my) DD
+ (nw(u — 1) + mg + ms) Do D = 0.

Factoring the LHS of4.14) yields

(nu —my) (nv(1 —u) — mse) R(u,v,w) = 0.
Also, (2.12 andr < s implies that
(2.15) %—Uw(l—u) <v(l—u)(l-w)

i%<Uw(1—u)—|—v(1—u)(1—w):v(l—u)
:>v(1—u)>%.

Thusmy — nv(1 — u) # 0, which implies that?(u, v, w) = 0.

(= Now suppose that, v, andw are real numbers with < D;(u,v,w) <
Dy(u,v,w), D(u,v,w) > 0, and R(u,v,w) = 0. Letr = % ands =
% Then0 < r < s and it follows as above thdt, s, u, v, w) satisfies £.10)
—(2.19. Letzy = u — 1, 29 = rv,andzg = (s — r)w + r. Then ¢.2) must hold
since ¢.2) and @.4) are an equivalent system of equations. Let

pl) = (@ + 1)™a™ (& — )™ (2 — 5)™,
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Working backwards, it is easy to see thatlj must hold and hence;, x5, andzs

must be the critical points gf. Sinceu = %1_-((__11)), v =220 andw = ©-",

(u,v,w) is a ratio vector op. O

Remark3. As noted in B] for the case whem; = my = m3 = my = 1, the proof
above shows that ifu, v, w) is a ratio vector, then there ammiquereal numbers
0 < r < s such that the polynomial

ple) = (o + )™ (@ = )™ = 5™
has(u, v, w) as a ratio vector. For general we make the following conjecture.
Conjecture 2.2. Let

p(x) = (z+1)™a"™ (z —rg)™ - (x —ry)™,

q(z) = (z+ )™a™(x — s3)™ -+ (x — sn)™V,

where( < r3 < --- < ryand0 < s3 < --- < sy. Suppose that and ¢ have the
same ratio vectors. Then= q.

As with N = 3, it was shown in}] thatm; = ms = ms = my = 1 implies that
o1 < 03 < 3. Not suprisingly, this does not hold for general positive real numbers
my,ms, ms, andmy. For example, ip(z) = (z + 1)*2z(x — 4)V2(z — 6)2, then
01 > 03 > O2.

Proof of Theoreni.7. m; + my < 3my — m3 = n < 4my. By (2.15 in the proof
of Theoreml.6, v(1 —u) > j. Thusy > 49— > 1 sinceu(l —u) < 1. By letting
rn=r<ry=-1<r3=0<ry=s,0necan derive equations similar t0.%)

with V = 4. The third equation becomes

nwu(l — v)

(mg—nw(l—u)(l—v))r+nwu(1—v):O:>r:nw(l_v>(1_u)_m3.
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1
r<—-1l=->-1
r

nw(l—v)(1—u)—mg
nwu(l —v) >l
= nw (1l —v) (1 —u)—m3 > —nwu(l —v)
)

)
= nw (1 —v) (1 —u) +nwu(l —v) >mg
= nw (1 —v) > mg

- w > ms
v onu(l—v)

Nowmy + my < 3msz — mg = n < 4ms. Thus% > —40(11_0) >1 U
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