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Abstract: Let p(x) be a hyperbolic polynomial–like function of the formp(x) = (x −
r1)

m1 · · · (x− rN )mN , wherem1, . . . , mN are given positive real numbers and
r1 < r2 < · · · < rN . Let x1 < x2 < · · · < xN−1 be theN − 1 critical
points ofp lying in Ik = (rk, rk+1), k = 1, 2, . . . , N − 1. Define the ratios
σk = xk−rk

rk+1−rk
, k = 1, 2, . . . , N − 1. We prove that mk

mk+···+mN
< σk <

m1+···+mk
m1+···+mk+1

. These bounds generalize the bounds given by earlier authors for
strictly hyperbolic polynomials of degreen. ForN = 3, we find necessary and
sufficient conditions for(σ1, σ2) to be a ratio vector. We also find necessary and
sufficient conditions onm1, m2, m3 which imply thatσ1 < σ2. ForN = 4, we
also give necessary and sufficient conditions for(σ1, σ2, σ3) to be a ratio vector
and we simplify some of the proofs given in an earlier paper of the author on
ratio vectors of fourth degree polynomials. Finally we discuss the monotonicity
of the ratios whenN = 4.
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1. Introduction and Main Results

If p(x) is a polynomial of degreen ≥ 2 with n distinct real rootsr1 < r2 < · · · < rn

and critical pointsx1 < x2 < · · · < xn−1, let

σk =
xk − rk

rk+1 − rk

, k = 1, 2, . . . , n− 1.

(σ1, . . . , σn−1) is called theratio vectorof p, andσk is called thekth ratio. Ratio
vectors were first discussed in [4] and in [1], where the inequalities

1

n− k + 1
< σk <

k

k + 1
, k = 1, 2, . . . , n− 1

were derived. Forn = 3 it was shown in [1] that σ1 andσ2 satisfy the polynomial
equation3(1 − σ1)σ2 − 1 = 0. In addition, necessary and sufficient conditions
were given in [5] for (σ1, σ2) to be a ratio vector. Forn = 4, a polynomial,Q,
in three variables was given in [5] with the property thatQ (σ1, σ2, σ3) = 0 for
any ratio vector(σ1, σ2, σ3). It was also shown that the ratios are monotonic–that
is, σ1 < σ2 < σ3 for any ratio vector(σ1, σ2, σ3). For n = 3, 1

3
< σ1 < 1

2
and

1
2

< σ2 < 2
3
, and thus it follows immediately thatσ1 < σ2. The monotonicity

of the ratios does not hold in general forn ≥ 5 (see [5]). Further results on ratio
vectors forn = 4 were proved by the author in [6]. In particular, necessary and
sufficient conditions were given for(σ1, σ2, σ3) to be a ratio vector. For a discussion
of complex ratio vectors for the casen = 3, see [7].

We now want to extend the notion of ratio vector to hyperbolic polynomial-like
functions (HPLF) of the form

p(x) = (x− r1)
m1 · · · (x− rN)mN ,

wherem1, . . . ,mN are given positive real numbers with
∑N

k=1 mk = n andr1, . . . , rN

are real numbers withr1 < r2 < · · · < rN . See [8] and the references therein for
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much more about HPLFs. We extend some of the results and simplify some of the
proofs in [5] and in [6], and we prove some new results as well. In particular, we
derive more general bounds on theσk (Theorem1.2). Even forN = 3 or N = 4,
the monotonicity of the ratios does not hold in general for all positive real numbers
m1, . . . ,mN . We provide examples below and we also derive necessary and suffi-
cient conditions onm1, m2, m3 for σ1 < σ2 (Theorem1.4). In order to define the
ratios for HPLFs, we need the following lemma.

Lemma 1.1. p′ has exactly one root,xk ∈ Ik = (rk, rk+1), k = 1, 2, . . . , N − 1.

Proof. By Rolle’s Theorem,p′ has at least one root inIk for eachk = 1, 2, . . . , N−1.

Now p′

p
=
∑N

k=1
mk

x−rk
, which has at mostN − 1 real roots since

{
1

x−rk

}
k=1,...,N

is a

Chebyshev system.

Now we define theN − 1 ratios

(1.1) σk =
xk − rk

rk+1 − rk

, k = 1, 2, . . . , N − 1.

(σ1, . . . , σN−1) is called theratio vectorof p.
We now state our first main result, inequalities for the ratios defined in (1.1).

Theorem 1.2. If σ1, . . . , σN−1 are defined by (1.1), then

(1.2)
mk

mk + · · ·+ mN

< σk <
m1 + · · ·+ mk

m1 + · · ·+ mk+1

Remark1. Well after this paper was written and while this paper was being con-
sidered for publication, the paper of Melman [9] appeared. Theorem 2 of [9] is
essentially Theorem1.2 of this paper for the case when themk are all nonnegative
integers.

http://jipam.vu.edu.au
mailto:alh4@psu.edu
http://jipam.vu.edu.au


Ratio Vectors of
Polynomial-Like Functions

Alan Horwitz

vol. 9, iss. 3, art. 76, 2008

Title Page

Contents

JJ II

J I

Page 5 of 21

Go Back

Full Screen

Close

Most of the rest of our results are for the special cases whenN = 3 or N = 4.
For N = 3 we give necessary and sufficient conditions onm1, m2, m3 for (σ1, σ2)
to be a ratio vector. The following theorem generalizes ([5],Theorem 1). Note that
n = m1 + m2 + m3.

Theorem 1.3.Letp(x) = (x− r1)
m1(x− r2)

m2(x− r3)
m3 . Then(σ1, σ2) is a ratio

vector if and only ifm1

n
< σ1 < m1

m1+m2
, m2

m2+m3
< σ2 < m1+m2

n
, andσ2 = m2

n(1−σ1)
.

We now state some results about the monotonicity of the ratios whenN = 3. For
m1 = m2 = m3 = 1, Theorem1.2yields 1

3
< σ1 < 1

2
and 1

2
< σ2 < 2

3
, and thus it

follows immediately thatσ1 < σ2. σ1 ≤ σ2 does not hold in general for all positive
real numbers(or even positive integers)m1, m2, andm3. For example, ifm1 = 2,
m2 = 1, m3 = 3, then it is not hard to show thatσ2 < σ1 for all r1 < r2 < r3(see
the example in §2 below). Also, ifm1 = 4, m2 = 3, andm3 = 6, thenσ1 < σ2 for
certainr1 < r2 < r3, while σ2 < σ1 for otherr1 < r2 < r3. For

p(x) = x4(x− 1)3

(
x +

1

2
− 1

2

√
13

)6

, σ1 = σ2 =
1

2
− 1

26

√
13.

One can easily derivesufficient conditions onm1, m2, m3 which imply thatσ1 < σ2

for all r1 < r2 < r3. For example, ifm1m3 < m2
2, then m1

m1+m2
< m2

m2+m3
, which

implies thatσ1 < σ2 by (1.2) with N = 3(see (2.6) in § 2). Also, if m1 +m3 < 3m2,
thenn < 4m2, which implies that

σ2 =
m2

n(1− σ1)
>

1

4(1− σ1)
≥ σ1

since4x(1 − x) ≤ 1 for all real x. We shall now derive necessary and sufficient
conditions onm1, m2, m3 for σ1 < σ2.
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Theorem 1.4.σ1 < σ2 for all r1 < r2 < r3 if and only ifm2
2 + m1(m2 −m3) > 0

and one of the following holds:

(1.3) m2
2 + m2 (m1 + m3)− 2m1m3 ≥ 0 and m2

2 + m3(m2 −m1) > 0

or

(1.4) m2
2 + m2 (m1 + m3)− 2m1m3 < 0 and 3m2 −m1 −m3 > 0.

As noted above, ifm1 = m2 = m3 = 1, thenσ1 < σ2. The following corollary
is a slight generalization of that and follows immediately from Theorem1.4.

Corollary 1.5. Suppose thatm1 = m2 = m3 = m > 0. Thenσ1 < σ2 for all
r1 < r2 < r3.

For N = 4 we now give necessary and sufficient conditions onm1, m2, m3, m4

for (σ1, σ2, σ3) to be a ratio vector. Note thatn = m1 + m2 + m3 + m4. To simplify
the notation, we useσ1 = u, σ2 = v,andσ3 = w for the ratios. The following
theorem generalizes ([6],Theorem 3).

Theorem 1.6.Let

D ≡ D(u, v, w) =

∣∣∣∣ n(w − v)−m3 n(1− w)−m4

n (u− 1) v (1− w) n (u− 1) vw + m2

∣∣∣∣ ,
D1 ≡ D1(u, v, w) = (nu−m1) (m2 − nvw (1− u)) ,

D2 ≡ D2(u, v, w) = (nu−m1) nv (1− u) (1− w) ,

and

R ≡ R(u, v, w)

=
nv(1−w)D2

1+(nvw−m1−m2)D1D2+(n(1−u)(w−v−1)+m2+m4)D1D+(nw(u−1)+m2+m3)D2D

(nu−m1)(m2−nv(1−u))
,
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which is a polynomial inu, v, and w of degree7. Then(u, v, w) ∈ <3 is a ratio
vector of

p(x) = (x− r1)
m1(x− r2)

m2(x− r3)
m3(x− r4)

m4

if and only if0 < D1(u, v, w) < D2(u, v, w), D(u, v, w) > 0, andR(u, v, w) = 0.

We now state a sufficiency result about the monotonicity of the ratios whenN =
4. We do not derive necessary and sufficient conditions in general onm1, m2, m3, m4

for σ1 < σ2 < σ3.

Theorem 1.7. Suppose thatm1 + m4 ≤ min {3m2 −m3, 3m3 −m2}. Thenσ1 <
σ2 < σ3.

As with N = 3, we have the following generalization of the case whenm1 =
m2 = m3 = m4 = 1, which follows immediately from Theorem1.7

Corollary 1.8. Suppose thatm1 = m2 = m3 = m4 = m > 0. Thenσ1 < σ2 < σ3.
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2. Proofs

We shall derive a system of nonlinear equations in the{rk} and{σk} using (1.1).
Let

p(x) = (x− r1)
m1 · · · (x− rN)mN ,

wherem1, . . . ,mN are given positive real numbers with
∑N

k=1 mk = n andr1, . . . , rN

are real numbers withr1 < r2 < · · · < rN . By the product rule,

p′(x) = (x− r1)
m1−1 · · · (x− rN)mN−1

N∑
j=1

(
mj

N∏
i=1,i6=j

(x− ri)

)
.

Since

p′(x) = n(x− r1)
m1−1 · · · (x− rN)mN−1 ×

N−1∏
k=1

(x− xk)

as well, we have

(2.1) n

N−1∏
k=1

(x− xk) =
N∑

j=1

(
mj

N∏
i=1,i6=j

(x− ri)

)
.

Let ek ≡ ek(r1, . . . , rN) denote thekth elementary symmetric function of therj,
j = 1, 2, . . . , N , starting withe0(r1, . . . , rN) = 1, e1(r1, . . . , rN) = r1 + · · · + rN ,
and so on. Let

ek,j(r1, . . . , rN) = ek(r1, . . . , rj−1, rj+1, . . . , rN),

that is,ek,j(r1, . . . , rN) equalsek(r1, . . . , rN) with rj removed,j = 1, . . . , N . Since
p(x + c) andp(x) have the same ratio vectors for any constantc, we may assume
that

r2 = 0.
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Equating coefficients in (2.1) using the elementary symmetric functions yields

nek(x1, . . . , xN−1) =
N∑

j=1

mjek,j(r1, 0, r3, . . . , rN), k = 1, 2, . . . , N − 1.

Since

ek,j(r1, 0, r3, . . . , rN) =

 ek,j(r1, r3, . . . , rN) if j 6= 2 andk ≤ N − 2;
ek(r1, r3, . . . , rN) if j = 2;
0 if j 6= 2 andk = N − 1,

we have

nek(x1, . . . , xN−1) = m2ek(r1, r3, . . . , rN)

+
N∑

j=1,j 6=2

mjek,j(r1, r3, . . . , rN), k = 1, . . . , N − 2

nx1 · · ·xN−1 = m2r1r3 · · · rN .(2.2)

Solving (1.1) for xk yields

(2.3) xk = ∆kσk + rk, k = 1, 2, . . . , N − 1,

where∆k = rk+1 − rk. Substituting (2.3) into (2.2) gives the following equivalent
system of equations involving the roots and the ratios.

(2.4) nek((1− σ1)r1, r3σ2, ∆3σ3 + r3, . . . , ∆N−1σN−1 + rN−1)

= m2ek(r1, r3, . . . , rN) +
N∑

j=1,j 6=2

mjek,j(r1, r3, . . . , rN), k = 1, . . . , N − 2,
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n(1− σ1)r1r3σ2(∆3σ3 + r3) · · · (∆N−1σN−1 + rN−1) = m2r1r3 · · · rN .

Critical in proving the inequalities 1
n−k+1

< σk < k
k+1

was the root–dragging
theorem (see [2]). First we generalize the root–dragging theorem. The proof is very
similar to the proof in [2] wherem1 = · · · = mN = 1. For completeness, we
provide the details here.

Lemma 2.1. Let x1 < x2 < · · · < xN−1 be theN − 1 critical points ofp lying
in Ik = (rk, rk+1), k = 1, 2, . . . , N − 1. Let q(x) = (x − r′1)

m1 · · · (x − r′N)mN ,
wherer′k > rk, k = 1, 2, . . . , N − 1 and letx′1 < x′2 < · · · < x′N−1 be theN − 1
critical points ofq lying in Jk = (r′k, r

′
k+1), k = 1, 2, . . . , N − 1. Thenx′k > xk,

k = 1, 2, . . . , N − 1.

Proof. Suppose that for somei, x′i ≤ xi. Now

p′(xi) = 0 ⇒
N∑

k=1

mk

xi − rk

= 0 and q′(x′i) = 0 ⇒
N∑

k=1

mk

x′i − r′k
= 0.

r′k > rk andx′i ≤ xi implies that

(2.5) x′i − r′k < xi − rk, k = 1, 2, . . . , N − 1.

Since both sides of (2.5) have the same sign,

mk

x′i − r′k
>

mk

xi − rk

, k = 1, 2, . . . , N − 1,

which contradicts the fact that
∑N

k=1
mk

xi−rk
and

∑N
k=1

mk

x′i−r′k
are both zero.

Proof of Theorem1.2. To obtain an upper bound forσk we use Lemma2.1. Arguing
as in [1], we can move the critical pointxk ∈ (rk, rk+1) as far to the right as possible
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by letting r1, . . . , rk−1 → rk andrk+2, . . . , rN → ∞. Let s = m1 + · · · + mk,
t = mk+2 + · · ·+ mN , and let

qb(x) = (x− rk)
s(x− rk+1)

mk+1(x− b)t.

Then

q′b(x) = (x− rk)
s
[
(x− rk+1)

mk+1t(x− b)t−1 + mk+1(x− rk+1)
mk+1−1(x− b)t

]
+ s(x− rk)

s−1(x− rk+1)
mk+1(x− b)t

= (x− rk+1)
mk+1−1(x− rk)

s−1(x− b)t−1

× [t(x− rk+1)(x− rk) + mk+1(x− rk)(x− b) + s(x− rk+1)(x− b)] .

xk is the smallest root of the quadratic polynomial

t(x− rk+1)(x− rk) + mk+1(x− rk)(x− b) + s(x− rk+1)(x− b)

= (mk+1 + t + s) x2 + (−trk+1 − trk −mk+1rk −mk+1b− srk+1 − sb) x

+ trk+1rk + srk+1b + mk+1rkb.

As b →∞, xk increases and approaches the root of(−mk+1−s)x+srk+1+mk+1rk.
Thus

xk ↑
srk+1 + mk+1rk

mk+1 + s
⇒ σk ↑

(
srk+1 + mk+1rk

mk+1 + s
− rk

)
/(rk+1 − rk)

=
srk+1 + mk+1rk − rk(mk+1 + s)

(mk+1 + s)(rk+1 − rk)

=
s

mk+1 + s
=

m1 + · · ·+ mk

m1 + · · ·+ mk+1

.

Similarly, to obtain a lower bound forσk, move the critical pointxk ∈ (rk, rk+1) as
far to the left as possible by lettingrk+2, . . . , rN → rk+1 andr1, . . . , rk−1 → −∞.
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By considering
qb(x) = (x− rk)

mk(x− rk+1)
s(x + b)t,

wheres = mk+1 + · · ·+mN andt = m1 + · · ·+mk−1, one obtainsσk ↓ mk

mk+···+mN
.

Proof of Theorem1.3. Let n = m1 + m2 + m3. To prove the necessity part, from
Theorem1.2with N = 3 we have

(2.6)
m1

n
< σ1 <

m1

m1 + m2

,
m2

m2 + m3

< σ2 <
m1 + m2

n
.

With N = 3, (2.4) becomes

n ((1− σ1)r1 + r3σ2) = m2 (r1 + r3) + m1r3 + m3r1,(2.7)

n(1− σ1)r1(r3σ2) = m2r1r3.

Sincer1 6= 0 6= r3, the second equation in (2.4) immediately implies thatn(1 −
σ1)σ2 = m2.

To prove sufficiency, suppose that(σ1, σ2) is any ordered pair of real numbers
with m1

n
< σ1 < m1

m1+m2
andσ2 = m2

n(1−σ1)
. Let r = nσ1−m1

m1+m2−nσ2
and letp(x) =

(x + 1)m1xm2(x− r)m3. Note thatr > 0 sincenσ1 −m1 > 0 and

m1 + m2 − nσ2 = m1 + m2 − n
m2

n(1− σ1)

=
σ1 (m1 + m2)−m1

−1 + σ1

=
m1 − σ1 (m1 + m2)

1− σ1

> 0.
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A simple computation shows that the critical points ofp in (−1, 0) and in (0, r),
respectively, arex1 = σ1 − 1 and

x2 = − m2

m1 + m2 + m3

σ1(m2 + m3) + (σ1 − 1) m1

(m1 + m2) σ1 −m1

.

Thus the ratios ofp arex1 + 1 = σ1 and x2

r
= m2

n(1−σ1)
= σ2. That finishes the proof

of Theorem1.3.

Proof of Theorem1.4. Sincep(cx) andp(x) have the same ratios whenc > 0, in
addition tor1 = 0, we may also assume thatr2 = 1. Thusp(x) = xm1(x−1)m2(x−
r)m3 , r > 1. A simple computation shows that

σ1 =
1

2n

(
(n−m3)r − n−m2 −

√
A(r)

)
+ 1,

σ2 =

1
2n

(
(n−m3)r − n−m2 +

√
A(r)

)
r − 1

,

where
A(r) = (m1 + m2)

2r2 + 2(m2m3 −m1n)r + (m1 + m3)
2.

Let
f(r) = (n−m3) r2 + (−n + 2m3 −m2) r + 2m2.

Note thatf(1) = m2+m3 > 0, f ′(1) = m1+m3 > 0, andf ′′(r) = 2m2+2m1 > 0,
which implies thatf(r) > 0 whenr > 1. Now

σ2 − σ1 =

1
2n

(
(n−m3)r − n−m2 +

√
A(r)

)
r − 1

− 1

2n

(
(n−m3)r − n−m2 −

√
A(r)

)
− 1
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=
r
√

A(r)− f(r)

2n (r − 1)
.

σ2 − σ1 > 0 when

r > 1 ⇐⇒
√

Ar > f(r)

⇐⇒ Ar2 >
(
(n−m3) r2 + (−n + 2m3 −m2) r + 2m2

)2
⇐⇒ 4 (r − 1)

((
m2

2 + m1m2 −m1m3

)
r2 +

(
m2m3 −m1m2 −m2

2

)
r + m2

2

)
> 0

⇐⇒ h(r) > 0

whenr > 1, where

h(r) =
(
m2

2 + m1(m2 −m3)
)
r2 + m2 (m3 −m2 −m1) r + m2

2.

We want to determine necessary and sufficient conditions onm1, m2, m3 which
imply thath(r) > 0 for all r > 1. A necessary condition is clearly

(2.8) m2
2 + m1(m2 −m3) > 0,

so we assume that (2.8) holds. Let

r0 =
1

2
m2

m1 + m2 −m3

m2
2 + m1(m2 −m3)

be the unique root ofh′. If r0 ≤ 1, then it is necessary and sufficient to have
h (1) > 0. If r0 > 1, then it is necessary and sufficient to haveh (r0) > 0. Now

r0 ≤ 1 ⇐⇒ 2
(
m2

2 + m1(m2 −m3)
)
≥ m2 (m2 + m1 −m3)

⇐⇒ m2
2 + m2 (m1 + m3)− 2m1m3 ≥ 0,
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and
h(1) > 0 ⇐⇒ m2

2 + m3(m2 −m1) > 0.

That proves (1.3). If

m2
2 + m2 (m1 + m3)− 2m1m3 < 0,

thenr0 > 1. It is then necessary and sufficient that

h (r0) =
1

4
m2

2 (m1 + m2 + m3)
3m2 −m1 −m3

m2
2 + m1(m2 −m3)

> 0 ⇐⇒ 3m2−m1−m3 > 0.

That proves (1.4).

One can also easily derive necessary and sufficient conditions onm1, m2, m3 for
σ2 < σ1. We simply cite an example here that shows that this is possible.
Example2.1. Let m1 = 2, m2 = 1, m3 = 3. As noted above, we may assume that
p(x) = x2(x− 1)(x− r)3, r > 1. Then a simple computation shows that

σ1 =
5

12
+

1

4
r− 1

12

√
25− 18r + 9r2 and σ2 =

3r − 7 +
√

25− 18r + 9r2

12
.

Simplifying yields

σ2 − σ1 =
−3r2 + r − 2 + r

√
25− 18r + 9r2

12(r − 1)
.

σ2 − σ1 < 0,

r > 1 ⇐⇒ r
√

25− 18r + 9r2 < 3r2 − r + 2

⇐⇒
(
3r2 − r + 2

)2 − r2
(
25− 18r + 9r2

)
> 0

⇐⇒ 4 (r − 1)
(
3r2 − 1

)
> 0.

Henceσ2 < σ1 for all r > 1.
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Remark2. For the example above, if we chooser = 2, then the roots areequispaced,
but σ2 < σ1. Contrast this with ([5, Theorem 6]), where it was shown that for any
N ≥ 3, if m1 = · · · = mN = 1 and the roots areequispaced, then the ratios ofp are
increasing.

We now discuss the caseN = 4, so thatn = m1 + m2 + m3 + m4. Theorem1.2
then yields

m1

n
< u <

m1

m1 + m2

,

m2

m2 + m3 + m4

< v <
m1 + m2

m1 + m2 + m3

,(2.9)

m3

m3 + m4

< w <
m1 + m2 + m3

n
.

In [6] necessary and sufficient conditions were given for(σ1, σ2, σ3) to be a ratio
vector whenm1 = m2 = m3 = 1. We now give a simpler proof than that given in
[6] which also generalizes to any positive real numbersm1, m2, andm3. The proof
here forN = 4 does not require the use of Groebner bases as in [6].

Proof of Theorem1.6. (⇐= Suppose first that(u, v, w) is a ratio vector of

p(x) = (x− r1)
m1(x− r2)

m2(x− r3)
m3(x− r4)

m4 .

Sincep(x + c) andp(x) have the same ratio vectors for any constantc, we may
assume thatr2 = 0, and thus the equations (2.4) hold withN = 4. In addition, since
p(cx) andp(x) have the same ratio vectors for any constantc > 0, we may also
assume thatr1 = −1. Let r3 = r andr4 = s, so that0 < r < s. Then (2.4) becomes

(2.10) (n(w − v)−m3) r + (n(1− w)−m4)s = nu−m1,

http://jipam.vu.edu.au
mailto:alh4@psu.edu
http://jipam.vu.edu.au


Ratio Vectors of
Polynomial-Like Functions

Alan Horwitz

vol. 9, iss. 3, art. 76, 2008

Title Page

Contents

JJ II

J I

Page 17 of 21

Go Back

Full Screen

Close

(2.11) nv(1− w)r2 + (nvw −m1 −m2) rs

+ (n (1− u) (w − v − 1) + m2 + m4) r

+ (nw(u− 1) + m2 + m3) s = 0,

(2.12) nv (u− 1) (1− w) r + (nvw (u− 1) + m2) s = 0.

In particular, (2.10) – (2.12) must be consistent. Eliminatingr ands from (2.10) and
(2.12) yields

(nv (u− 1) (1− w) (n(1− w)−m4)− (n(w − v)−m3) (nvw (u− 1) + m2)) s

= (nu−m1) nv (u− 1) (1− w) ,

or
D(u, v, w)s = (nu−m1) nv (1− u) (1− w) .

Note thatnu−m1 > 0, 1−u > 0, v > 0, and1−w > 0 by (2.9). ThusD(u, v, w) >
0 and by Cramer’s Rule,

(2.13) r =
D1(u, v, w)

D(u, v, w)
, s =

D2(u, v, w)

D(u, v, w)
,

where

D1(u, v, w) =

∣∣∣∣ nu−m1 n(1− w)−m4

0 nvw (u− 1) + m2

∣∣∣∣ = (nu−m1) (m2 − nvw (1− u)) ,

and

D2(u, v, w) =

∣∣∣∣ n(w − v)−m3 nu−m1

nv (u− 1) (1− w) 0

∣∣∣∣ = (nu−m1) nv (1− u) (1− w) .
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(2.13) and D(u, v, w) > 0 imply that D1(u, v, w) > 0, andr < s implies that
D1(u, v, w) < D2(u, v, w). Now substitute the expressions forr ands in (2.13) into
(2.11). Clearing denominators gives

(2.14) nv(1− w)D2
1 + (nvw −m1 −m2) D1D2

+ (n (1− u) (w − v − 1) + m2 + m4) D1D

+ (nw(u− 1) + m2 + m3) D2D = 0.

Factoring the LHS of (2.14) yields

(nu−m1) (nv(1− u)−m2) R(u, v, w) = 0.

Also, (2.12) andr < s implies that

m2

n
− vw (1− u) < v (1− u) (1− w)(2.15)

⇒ m2

n
< vw (1− u) + v (1− u) (1− w) = v (1− u)

⇒ v(1− u) >
m2

n
.

Thusm2 − nv(1− u) 6= 0, which implies thatR(u, v, w) = 0.

(=⇒ Now suppose thatu, v, andw are real numbers with0 < D1(u, v, w) <

D2(u, v, w), D(u, v, w) > 0, andR(u, v, w) = 0. Let r = D1(u,v,w)
D(u,v,w)

and s =
D2(u,v,w)
D(u,v,w)

. Then0 < r < s and it follows as above that(r, s, u, v, w) satisfies (2.10)
– (2.12). Let x1 = u − 1, x2 = rv, andx3 = (s − r)w + r. Then (2.2) must hold
since (2.2) and (2.4) are an equivalent system of equations. Let

p(x) = (x + 1)m1xm2(x− r)m3(x− s)m4 .
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Working backwards, it is easy to see that (2.1) must hold and hencex1, x2, andx3

must be the critical points ofp. Sinceu = x1−(−1)
0−(−1)

, v = x2−0
r−0

, andw = x3−r
s−r

,
(u, v, w) is a ratio vector ofp.

Remark3. As noted in [6] for the case whenm1 = m2 = m3 = m4 = 1, the proof
above shows that if(u, v, w) is a ratio vector, then there areuniquereal numbers
0 < r < s such that the polynomial

p(x) = (x + 1)m1xm2(x− r)m3(x− s)m4

has(u, v, w) as a ratio vector. For generalN we make the following conjecture.

Conjecture 2.2. Let

p(x) = (x + 1)m1xm2(x− r3)
m3 · · · (x− rN)mN ,

q(x) = (x + 1)m1xm2(x− s3)
m3 · · · (x− sN)mN ,

where0 < r3 < · · · < rN and0 < s3 < · · · < sN . Suppose thatp andq have the
same ratio vectors. Thenp = q.

As with N = 3, it was shown in [5] thatm1 = m2 = m3 = m4 = 1 implies that
σ1 < σ2 < σ3. Not suprisingly, this does not hold for general positive real numbers
m1, m2, m3, andm4. For example, ifp(x) = (x + 1)3/2x(x − 4)

√
2(x − 6)2, then

σ1 > σ3 > σ2.

Proof of Theorem1.7. m1 + m4 ≤ 3m2 −m3 ⇒ n ≤ 4m2. By (2.15) in the proof
of Theorem1.6, v(1−u) > 1

4
. Thusv

u
> 1

4u(1−u)
≥ 1 sinceu(1−u) ≤ 1. By letting

r1 = r < r2 = −1 < r3 = 0 < r4 = s, one can derive equations similar to (2.2)
with N = 4. The third equation becomes

(m3 − nw (1− u) (1− v)) r + nwu (1− v) = 0 ⇒ r =
nwu(1− v)

nw (1− v) (1− u)−m3

.
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r < −1 ⇒ 1

r
> −1

⇒ nw (1− v) (1− u)−m3

nwu(1− v)
> −1

⇒ nw (1− v) (1− u)−m3 > −nwu(1− v)

⇒ nw (1− v) (1− u) + nwu(1− v) > m3

⇒ nw (1− v) > m3

⇒ w

v
>

m3

nv(1− v)
.

Now m1 + m4 ≤ 3m3 −m2 ⇒ n ≤ 4m3. Thusw
v

> 1
4v(1−v)

≥ 1.
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