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ABSTRACT. Let L denote the time-dependent Schrodinger operater $pace variables. We

consider a variety of Lebesgue norms for functiansn R"*!, and prove or disprove estimates
for such norms of: in terms of theL? norms ofu and Lu. The results have implications for

self-adjointness of operators of the folm- V' whereV is a multiplication operator. The proofs
are based mainly on Strichartz-type inequalities.
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1. INTRODUCTION

Let (z,t) € R"™ wheren > 1. The Schrédinger equatio%ti = i/ u has been much
studied using spectral properties of the self-adjoint operatoWhen a multiplication operator
(potential) V' is added, it becomes important to determine whether+ V' is a self-adjoint
operator, and there is a vast literature on this question (see e.qg. [9]).

One can also, however, regard the operdtor —i% — /A, as a self-adjoint operator on
L?(R™1), and that is the point of view taken in this paper. We ask what can be said about the
domain of L, more specifically, we ask which? spaces, and more generally mix&@( L")
space, a function must belong to, given thatis in the domain of. (i.e. » and Lu both belong
to L*(R"™1)). We answer this question and, using the Kato-Rellich theorem, deduce sufficient
conditions onV for L 4+ V to be self-adjoint.

Our approach is based on the fact that any sufficiently well-behaved functaiR™*! can
be regarded as a solution of the initial value problem (IVP)

{ —tuy — Dgu = g(x,t),
u(z, a) = f(z)
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wherea € R, f(z) = u(z,a) andg = Lu.

To apply this, we will use estimates farbased on given bounds fgrandg. A number of
such estimates are known and generally called Strichartz inequalities| after [12] which obtained
such anL? bound foru. This has since been generalized to give inequalities for mixed norms
[13,14]. The specific inequalities we use concern the gase0 of (1.1) and give bounds for
u in terms of|| f|| > z~) - see [(3.R) below. The precise range of mixgdL;) norms for which
the bound[(3.2) holds is known as a result of [13, 4] and the counterexample in [6].

In Sectior] 2 we prove a special case of our main theorem, namely a bouméhfdr°(L?),
which does not require Strichartz estimates, only elementary arguments using the Fourier trans-
form. The main theorem, giving{(L’) bounds for the largest possible set(gfr) pairs, is
proved in Sectiop|3. In fact, we prove a somewhat stronger bound, in a smaller&pacee-
fined below. The fact that the set of paits ) covered by Theorefn 3.1 is the largest possible
is shown in Sectionl4.

Some results on a similar question for the wave operator can be found in [7]. For Strichartz-
type inequalities for the wave operator, see e.g.[[11,112,/2, 3, 4].

We assume notions and definitions about the Fourier Transform and unbounded operators
and for a reference one may consult [8], [5]lor![10]. We also use on several occasions the well-
known Duhamel principle for the Schrodinger equation (seele.g. [1]).

Notation. The symboli stands for the Fourier transform ofin the spacex) variable while
the inverse Fourier transform will be denoted eithe®y v or .

We denote byC°(R™*!) the space of infinitely differentiable functions with compact sup-
port.

We denote byR™ the set of all positive real numbers together witho.

Forl <p < oo, ||, is the usual?-norm whereag - || .» .4y Stands for the mixed spacetime
Lebesgue norm defined as follows

1
q
el zg) = (/R Hu(t)H%gdt)

We also define some modified mixed norms. First we define, for any inkeger

k41 3
ol = ([ Tuolz,ae)"

and then
1
p
ullz,,. = (Z HuHLq (LT> :
keZ

We note thatflullz, ., . > [ullz,,,. If @ > go, and that|ul| oy < [[ullg,,. if ¢ > p.
Finally we define

={f e L*(R""): Lf € L*(R")},

wherel is defined as in the abstract and where the derivative is taken in the distributional sense.
We note thaf\/; = D(L), the domain of_, and also thaf’;°(R"*) is dense inV/? in the graph
norm ||u||L2(Rn+l) + |

n+1) *
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2. L°(L%) ESTIMATES.

Before stating the first result, we are going to prepare the ground for it. Take the Fourier
transform of the IVP[(1]1) in the space variable to get

{ —ity + n*t = g(n, ),

i(n, ) = f(n)
which has the following solution (valid for alle R):
t
(2.1) a(n,t) = fn)e™™* +i / e g(n, 5)ds,
wheren € R".

Duhamel’s principle gives an alternative way of writing the part of the solution depending on
g. Taking the cas¢ = 0, the solution of[(1.]1) can be written as

(2.2) u(z,t) = z/ ug(z, t)ds,

whereu, is the solution of
{ Lu, =0, t>s,

Now we state a result which we can prove using](2.1). In the next section we prove a more
general result using Strichartz inequalities and Duhamel’s pringiplg (2.2).

Proposition 2.1. For all « > 0, there exist$ > 0 such that
[l 222 < all Lt Zamoery + bl 2oy

forall v € M7}.
Proof. We prove the result for € C5°(R™"!) and a density argument allows us to deduce it
foru e M}.

We use the fact that any suchis, for anya € R, the unique solution of (1}1), where
f(z) = u(z,) andg = Lu, and therefore satisfigs (2.1).

Letk € Z and lett anda be such thak <t < k+ 1 andk < a < k + 1. Squaring|[(Z]1),

integrating with respect tg in R", and using Cauchy-Schwarz (and the fact that «| < 1),
we obtain

t
2.9 i Oy <2 [ fatme)Pdn+2 [ [ lata.s)Pasan

Now integrating against in [k, k£ + 1] allows us to say that

k+1 k+1
1) 2oy < 2 / (. ) Pddar + 2 / 3, ) 2dnds.
k R™ k R™

Now take the essential supremum of both sidessawer [k, k + 1], then sum ink overZ to get
(recalling thaty = Lu)

> ess sup [ulB)lEan < 2Lulfagoss) + 2lulsenss.
f k<t<k+1

Finally to get an arbitrarily small constant in tiie, term we use a scaling argument: tet
be a positive integer and letz, t) = u(mx, m*t). Then we find

—1—n/2|

||U||L2(Rn+1) =m |U||L2(R"+1)
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and
HL'UHLQ(RH,+1) = mlfn/ZHLUHH(RnH).
Also,
[0(-s )| p2qny = "2 (-, mPt)]| 2 ny
and so
sup [o(, 8[| 72@ny =m™" sup Jul-, ) 172 n)
E<t<k+1 m2k<t<m?2(k+1)
m2(k+1)—1
<m™ Y sup fu( )| Fagn)
j=m?2k J<t<j+1

Summing over gives

||v||%2,0012 < m_n||u||%2,oo,2

S m" <2HLUH%2(R”+1) + 2||U||%2(Rn+1))
< 2m 72| Lo Faggriy + 202 g
and choosingn so that2m =2 < a completes the proof. O

Now we recall the Kato-Rellich theorem which states thdt i a self-adjoint operator on a
Hilbert space andl” is a symmetric operator defined ®{ L), and if there are positive constants
a < 1 andb such that|Vu|| < al|Lu| + b||u| for all w € D(L), thenL + V is self-adjoint on
D(L) (seel9)).

Corollary 2.2. Let V' be a real-valued function i, 2. ThenL + V is self-adjoint on
D(L) = M}.
Proof. One can easily check that

IVl ey < V[ 2o o 1l 250 -

Choosen < ||V||;- ., and then Propositi.l shows that V' satisfies the hypothesis of
the Kato-Rellich theorem. O

In particular, it follows thatl + V' is self-adjoint wheneve¥” € L?(L2°).

3. L{(L") ESTIMATES.

Now we come to the main theorem in this paper, which depends on the following Strichartz-
type inequality. Suppose > 1 andq andr are positive real numbers (possibly infinite) such
thatg > 2 and

2
(3.1) iR
q 2

Whenn = 2 we exclude the casg¢ = 2, r = oco. Then there is a constant such that if
f € L*(R") andg = 0, the solutioru of (1.1) satisfies

(3.2) ullacrry < Cll ]l L2@n)-

This result can be found in [13] for > 2; the more difficult ‘end-point’ case where= 2,
n > 3 is treated inl[4]. Tha{(3]2) fails in the exceptional case 2, ¢ = 2, = oo is shown in

[6].
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Forn > 1 we define aregiof2,, € Rt x R* as follows: forn # 2,
2
(3.3) Qn:{(q,T)€R+XR+:&—l—gzg,qZQ,TZQ}

and forn = 2, {2, is defined by the same expression, with the omission of the paint).

The sets2,, are probably most easily visualized in thﬂg 1)-plane. Ther; is a quadri-
lateral with vertices(:,0), (3,0),(0,3),(3,3) and forn > 2, Q, is a triangle with vertices
(3,%2),(0,3), (3, 3), the point(, 0) being excluded in the case= 2.

Theorem 3.1.Letn > 1, and let(q,r) € €2,,. Then for alla > 0, there exist$ > 0 such that
(34) ||u||52’q77, S (ZHLUHLQ(Rnﬁ-l) + bHuHLQ(Rn-H)
forall u € M7}.

Proof. By the inclusionl,,, , € Ly, ., Wheng, > ¢ it suffices to treat the case where
2+t =1, for which ) holds.

Letk € Z and leto € [k, k + 1]. As in the proof of Proposition 2.1 we use the fact thas
the solution of[(1.]1) withf = u(-, ) andg = Lu. Now we splitu into two partsu = u; + us,
whereu, us are the solutions of

Lu; =g, Luy =0,
u (x, ) =0, us(x, ) = f.
The estimate for, is deduced from (3]2):
(3.5) ||U2||L§(L;;) < Ol fllrz@ny < Cllu, @)l z2@n).-
Foru, we apply [(2.2) to obtain
t
(3.6) uy(z,t) = 7,/ ug(z, t)ds,

from which we deduce

k+1
s s )l ey s/k s (e, 8l e s

fort € [k, k + 1], and hence

k+1
HulHLf,k(LQ) < /k wsllLa(rryds

k+1
S C/ Hg(~,5)HL2(Rn)ds
k
< Ol gl 2 @n x [ k+17)-
Combining this with[(3.p) we have
||U||%gyk(L;) < 2C%|u(-, a)||2L2(]R") + 202HLUH%2(R”X[1~:,I~:+1})'
Integrating w.r.t.a from k to k£ + 1 gives
HUHigk(L;) < 202”u‘|%2(]1€”><[k,k+1}) + 202HLU||2L2(Rnx[k,k+1})-
Summing ovetk, we obtain
HuH%&qm S 202HUHL2(R”+1) -+ 2CQ||LUHL2(R"+1)7
and the proof is completed by a similar scaling argument to that used in Proppsition 2[1.
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Using the inclusiorC, ,, C L (L%) for ¢ > 2 we deduce
Corollary 3.2. Letn > 1, and let(q, ) € ©,. Then for alla > 0, there exist$ > 0 such that
(3.7) lullps(ry) < allLull p2eer) + bllull L2gnsry
forall v € M7}.

In particular, we get such a bound fip|| o (z»+1) Whenever < ¢ < (2n + 4)/n.
By applying the Kato-Rellich theorem we can deduce a generalization of Corollary 2.2 from
Theoreni3.11. We first define

(3.8) Q;:{(p,S)ER+XR+:2+2§1,p22,822}
P S
for n # 2, and forn = 2, (), is defined by the same expression, with the omission of the point
(2, 00).
Corollary 3.3. Letn > 1 and let(p,s) € Q. LetV be a real-valued function belonging to
L ps- ThenL +V is self-adjoint onM 7.

Proof. Let g = 2 andr = 2. Then(q,r) € €, and the conclusior} (3.4) of Theor3.1
applies. Now we have

k+1 k+1
2 2
/k IV, £) gy < / a8 oy IV, )

2

Ls(R")
2 2
< HUHLZ,C(L;) VHLQ,C(L;)
and summation over gives
”VU||L2(RR+1) S ||u||£2,q,T||V||£oo,p,s‘
Then, using[(3}4), the result follows in the same way as Cordllafy 2.2. O

It follows from Corollary[ 3.8 thaf. + V' is self-adjoint whenevel” € LV(L:) for (p, s) € Q.
Taking the case = p, we find thatL + V is self-adjoint if\” € LP(R"*!) for somep > n + 2.

4. COUNTEREXAMPLES
Now we show that Theorem 3.1 is sharp, as far as the allowed get &f concerned.

Proposition 4.1. Letn > 1 and letq andr be positive real numbers, possibly infinite, such that
(g,7) ¢ 2,. Then there are no constantsandb such that[(3.]7) holds for ati € M.

Proof. For (¢, ) to fail to be in(2,, one of the following three possibilities must occur:(ix 2
orr < 2; (ii) % + 2 < 5; (iii) n = 2, ¢ = 2 andr = co. We consider these cases in turn.
(i) If ¢ < 2, choose a sequené@;,)rcz Which is ini? but not ini?. Let ¢(z,t) be a smooth
function of compact support oR"! which vanishes fot outside|0, 1], and letu(z,t) =
Y kez Bed(x,t — k). Thenu € M7, butu ¢ Lj(L%) for anyr.

The case' < 2 can be treated similarly. We chose a sequeficehich is ini? but noti”,
and a smoothp which vanishes for:; outside(0, 1], then setu(x,t) = >, ., Brp(z — key, 1),
wheree; is the unit vecto(1,0,...,0) in R™. Thenu € M}, butu ¢ L{(L") for anygq.

(ii) In this case we use the scaling argument which shows that the Strichartz estimates fail,
together with a cutoff to ensureand Lu are inL?.

We start with a non-zerg € L?(R"), and letu be the solution 01) withh = 0 andg = 0.
(An explicit example would bef (z) = e " and thenu(z,t) = (1 4 4it) /2 l21?/(1+4it))
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Choose a smooth functiahonR such that(0) # 0 and such thap and¢’ are inL2. Then for
A > 0 define

ox(z, 1) = NV 2u(Ax, A2 é(t).

Then (usingLu = 0) we find Lv(z, t) = —iA"?u(Az, A2t)¢'(t). We calculate|v, || p2gn+1) =
| fllL2my[|@|| 2 @nd|| Loy || p2gntry = || f || L2emy ||@ || 2. AlsO

loallzses) = X { / (- #)

where = § — % — 2 > 0. SOA||ualls(rg) — [@(0)[]JullL2(zy) (nOte that the norm on the

right may be infinite) and hendg, || .¢(1;) tends toco asA — oo, completing the proof.

¢<A2t>!th}q ,

q
Lr (Rn)

(iif) This exceptional case we treat in a similar fashion to (ii), but we need the result from [6],
that the Strichartz inequality fails in this case. We start by fixing a smooth fungtoorR such
that¢ = 1 on[—1,1] and¢ and¢’ are inL>.

Now let M > 0 be given and we usel[6] to finfle L*(R?) with || f||2z2) = 1 such that the
solutionu of ) witha = 0 andg = 0 satisfies|ul|2(,) > M. Then we can find? > 0 so
that [, [[u(:, £)[[2 . (geydt > M2 Let X = RY2 and defines(z, ) = A"/?u(\z, A2t)¢(t). Then
[vllz2@s) = (|8l 22, | Lv[lr2(ms) = [|¢']| 22 and

1

100125 ey = [ 0C, )2yt > M2,
—1

which completes the proof, siné¢ is arbitrary. O

We remark that'[6] also gives an examplefof L?*(R?) such thatw ¢ L?(BMO,) and the
argument of part (iii) can then be applied to show that no inequality

ull2srr0,) < allLullL2@sy + bl|ul] L2 (s

can hold.

5. QUESTION

We saw as a result of Corollafy 3.3 that(jf, s) € Q*, thenL + V is self-adjoint on)}
wheneverl € LY(L:). One can ask whether this can be extended to a larger range f
with p, s > 2. If one asks whetheL + V' is defined on)/}', then we would require a bound
|Vl p2@n+1y < allLul|p2@n+1y + bl|u|| to hold for allu € M. If such a bound is to hold for
all Ve LY(L:), then, in fact, we requir.?) to hold for= p% andr = 2, which we know
cannot hold unles§, s) € Q*.

One can instead ask fdr+ 1/, defined on sag/s°(R"!), to be essentially self-adjoint. This
is equivalent to saying that the only (distribution) solutiom .#{R"*!) of the PDE

—tuy — Nyu + Vu = tiu
isu = 0 (see e.qg..[8]).

We do not know if there are any values (@f s) not in €2 such that this holds for alV ¢
L?(L%). The analogous question for the Laplacian is extensively discussed in [9].
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