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Abstract

In this paper, we study the weakly convergent sequence coefficient and obtain
its estimates for some parameters in Banach spaces, which give some sufficient
conditions for a Banach space to have normal structure.
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1. Introduction
A Banach spaceX said to have(weak) normal structureprovided for every
(weakly compact) closed bounded convex subsetC of X with diam(C) > 0,
contains a nondiametral point, i.e., there existsx0 ∈ C such thatsup{‖x−x0‖ :
x ∈ C} < diam(C). It is clear that normal structure and weak normal structure
coincides whenX is reflexive.

The weakly convergent sequence coefficientWCS(X), a measure of weak
normal structure, was introduced by Bynum in [3] as the following.

Definition 1.1. The weakly convergent sequence coefficient ofX is defined by

(1.1) WCS(X)

= inf

{
diama({xn})

ra({xn})
: {xn} is a weakly convergent sequence

}
,

wherediama({xn}) = lim supk→∞{‖xn − xm‖ : n,m ≥ k} is the asymptotic
diameter of{xn} andra({xn}) = inf{lim supn→∞ ‖xn − y‖ : y ∈ c̄o({xn}) is
the asymptotic radius of{xn}.

One of the equivalent forms ofWCS(X) is

WCS(X) = inf

{
lim

n,m,n6=m
‖xn − xm‖ : xn

w→ 0, ‖xn‖ = 1

and lim
n,m,n6=m

‖xn − xm‖ exists

}
.
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Obviously,1 ≤ WCS(X)≤ 2, and it is well known thatWCS(X) > 1 implies
thatX has a weak normal structure.

The constantR(a, X), which is a generalized García-Falset coefficient [10],
was introduced by Domínguez [7] as: For a given real numbera > 0,

(1.2) R(a, X) = sup
{

lim inf
n→∞

‖x + xn‖
}

,

where the supremum is taken over allx ∈ X with ‖x‖ ≤ a and all weakly null
sequences{xn} ⊆ BX such that

(1.3) lim
n,m,n6=m

‖xn − xm‖ ≤ 1.

We shall assume throughout this paper thatBX andSX to denote the unit
ball and unit sphere ofX, respectively.xn

w→ x stands for weak convergence of
sequence{xn} in X to a pointx in X.
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2. Main Results
TheJames constant,or thenonsquare constant, was introduced by Gao and Lau
in [8] as

J(X) = sup{‖x + y‖ ∧ ‖x− y‖ : x, y ∈ SX}
= sup{‖x + y‖ ∧ ‖x− y‖ : x, y ∈ BX}.

A relation between the constantR(1, X) and the James constantJ(X) can be
found in [6, 12]:

R(1, X) ≤ J(X).

We now state an inequality between the James constantJ(X) and the weakly
convergent sequence coefficientWCS(X).

Theorem 2.1.LetX be a Banach space with the James constantJ(X). Then

(2.1) WCS(X) ≥ J(X) + 1

(J(X))2
.

Proof. If J(X) = 2, it suffices to note thatWCS(X) ≥ 1. Thus our estimate is
a trivial one.

If J(X) < 2, thenX is reflexive. Let{xn} be a weakly null sequence in
SX . Assume thatd = limn,m,n6=m ‖xn − xm‖ exists and consider a normalized
functional sequence{x∗n} such thatx∗n(xn) = 1. Note that the reflexivity ofX
guarantees, by passing through the subsequence, that there existsx∗ ∈ X∗ such
thatx∗n

w→ x∗. Let 0 < ε < 1 and chooseN large enough so that|x∗(xN)| < ε/2
and

d− ε < ‖xN − xm‖ < d + ε
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for all m > N. Note that

lim
n,m,n6=m

∥∥∥∥xn − xm

d + ε

∥∥∥∥ ≤ 1 and

∥∥∥∥ xN

d + ε

∥∥∥∥ ≤ 1.

Then by the definition ofR(1, X), we can chooseM > N large enough such
that∥∥∥∥xN + xM

d + ε

∥∥∥∥ ≤ R(1, X) + ε ≤ J(X) + ε, |(x∗M − x∗)(xN)| < ε/2,

and|x∗N(xM)| < ε. Hence

|x∗M(xN)| ≤ |(x∗M − x∗)(xN))|+ |x∗(xN)| < ε.

Putα = J(X),

x =
xN − xM

d + ε
, and y =

xN + xM

(d + ε)(α + ε)
.

It follows that‖x‖ ≤ 1, ‖y‖ ≤ 1, and also that

‖x + y‖ =
1

(d + ε)(α + ε)

∥∥(α + 1 + ε)xN − (α− 1 + ε)xM

∥∥
≥ 1

(d + ε)(α + ε)

(
(α + 1 + ε)x∗N(xN)− (α− 1 + ε)x∗N(xM)

)
≥ α + 1− ε

(d + ε)(α + ε)
,
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‖x− y‖ =
1

(d + ε)(α + ε)

∥∥(α + 1 + ε)xM − (α− 1 + ε)xN

∥∥
≥ 1

(d + ε)(α + ε)

(
(α + 1 + ε)x∗M(xM)− (α− 1 + ε)x∗M(xN)

)
≥ α + 1− ε

(d + ε)(α + ε)
.

Thus, from the definition of the James constant,

J(X) ≥ α + 1− ε

(d + ε)(α + ε)
=

J(X) + 1− ε

(d + ε)(J(X) + ε)
.

Letting ε → 0, we get

d ≥ J(X) + 1

(J(X))2
.

Since the sequence{xn} is arbitrary, we get the inequality (2.1).

As an application of Theorem2.1, we can obtain a sufficient condition for
X to have normal structure in terms of the James constant.

Corollary 2.2 ([4, Theorem 2.1]). Let X be a Banach space withJ(X) <
(1 +

√
5)/2. ThenX has normal structure.

Themodulus of smoothness[14] of X is the functionρX(τ) defined by

ρX(τ) = sup

{
‖x + τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ SX

}
.
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It is readily seen that for anyx, y ∈ SX ,

‖x± y‖ ≤ ‖x± τy‖+ (1− τ) (0 < τ ≤ 1),

which implies thatJ(X) ≤ ρX(τ) + 2− τ.

In [2], Baronti et al. introduced a constantA2(X), which is defined by

A2(X) = ρX(1) + 1 = sup

{
‖x + y‖+ ‖x− y‖

2
: x, y ∈ SX

}
.

It is worth noting thatA2(X) = A2(X
∗).

We now state an inequality between the modulus of smoothnessρX(τ) and
the weakly convergent sequence coefficientWCS(X).

Theorem 2.3.LetX be a Banach space with the modulus of smoothnessρX(τ).
Then for any0 < τ ≤ 1,

(2.2) WCS(X) ≥ ρX(τ) + 2

(ρX(τ) + 1)(ρX(τ)− τ + 2)
.

Proof. Let 0 < τ ≤ 1. If ρX(τ) = τ , it suffices to note that

ρX(τ) + 2

(ρX(τ) + 1)(ρX(τ)− τ + 2)
=

τ + 2

2(τ + 1)
≤ 1.

Thus our estimate is a trivial one.
If ρX(τ) < τ , thenX is reflexive. Let{xn} be a weakly null sequence inSX .

Assume thatd = lim n, m, n 6= m‖xn − xm‖ exists and consider a normalized
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functional sequence{x∗n} such thatx∗n(xn) = 1. Note that the reflexivity of
X guarantees that there existsx∗ ∈ X∗ such thatx∗n

w→ x∗. Let ε > 0 and
xM , xN , x andy selected as in Theorem2.1. Similarly, we get

‖x± τy‖ ≥ α(τ) + τ − ε

(d + ε)(α(τ) + ε)
,

whereα(τ) = ρX(τ) + 2− τ. Then by the definition ofρX(τ), we obtain

ρX(τ) ≥ α(τ) + τ − ε

(d + ε)(α(τ) + ε)
− 1.

Letting ε → 0,

ρX(τ) + 1 ≥ α(τ) + τ

dα(τ)
=

ρX(τ) + 2

d(ρX(τ)− τ + 2)
,

which gives that

d ≥ ρX(τ) + 2

(ρX(τ) + 1)(ρX(τ)− τ + 2)
.

Since the sequence{xn} is arbitrary, we get the inequality (2.2).

It is known that ifρX(τ) < τ/2 for someτ > 0, thenX has normal structure
(see [9]). Using Theorem2.3, We can improve this result in the following form:

Corollary 2.4. LetX be a Banach space with

ρX(τ) <
τ − 2 +

√
τ 2 + 4

2

for someτ ∈ (0, 1]. ThenX has normal structure. In particular, ifA2(X) <
(1 +

√
5)/2, thenX and its dualX∗ have normal structure.
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In connection with a famous work of Jordan-von Neumann concerning inner
products, theJordan-von Neumann constantCNJ(X) of X was introduced by
Clarkson (cf. [1, 11]) as

CNJ(X) = sup

{
‖x + y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X and not both zero

}
.

A relationship betweenJ(X) andCNJ(X) is found in ([11] Theorem 3):J(X) ≤√
2CNJ(X).

In [5], Dhompongsa et al. proved the following inequality (2.3). We now re-
state this inequality without the ultra product technique and the factCNJ(X) =
CNJ(X

∗).

Theorem 2.5 ([5] Theorem 3.8).LetX be a Banach space with the von Neumann-
Jordan constantCNJ(X). Then

(2.3) (WCS(X))2 ≥ 2CNJ(X) + 1

2(CNJ(X))2
.

Proof. If CNJ(X) = 2, it suffices to note thatWCS(X) ≥ 1. Thus our esti-
mates is a trivial one.

If CNJ(X) < 2, thenX is reflexive. Let{xn} be a weakly null sequence in
SX . Assume thatd = limn,m,n6=m ‖xn − xm‖ exists and consider a normalized
functional sequence{x∗n} such thatx∗n(xn) = 1. Note that the reflexivity ofX
gurantees that there esistsx∗ ∈ X∗ such thatx∗n

w→ x∗. Let ε > 0 and chooseN
large enough so that|x∗(xN)| < ε/2 and

d− ε < ‖xN − xm‖ < d + ε
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for all m > N. Note that

lim
n,m,n6=m

∥∥∥∥xn − xm

d + ε

∥∥∥∥ ≤ 1 and

∥∥∥∥ xN

d + ε

∥∥∥∥ ≤ 1.

Then by the definition ofR(1, X), we can chooseM > N large enough such
that∥∥∥∥xN − xM

d + ε

∥∥∥∥ ≤ R(1, X) + ε ≤
√

2CNJ(X) + ε, |(x∗M − x∗)(xN)| < ε/2,

and|x∗N(xM)| < ε. Hence

|x∗M(xN)| < |(x∗M − x∗)(xN))|+ |x∗(xN)| < ε.

Putα =
√

2CNJ(X), x = α2(xN − xM), y = xN + xM . It follows that‖x‖ ≤
α2(d + ε), ‖y‖ ≤ (α + ε)(d + ε), and also that

‖x + y‖ = ‖(α2 + 1)xN − (α2 − 1)xM‖
≥ (α2 + 1)x∗N(xN)− (α2 − 1)x∗N(xM)

≥ α2 + 1− 3ε,

‖x− y‖ = ‖(α2 + 1)xM − (α2 − 1)xN‖
≥ (α2 + 1)x∗M(xM)− (α2 − 1)x∗M(xN)

≥ α2 + 1− 3ε.

Thus, from the definition of the von Neumann-Jordan constant,

CNJ(X) ≥ 2(α2 + 1− 3ε)2

2(α4(d + ε)2 + (α + ε)2(d + ε)2)

=
1

(d + ε)2
· (α2 + 1− 3ε)2

α4 + (α + ε)2
.
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Sinceε is arbitrary andα =
√

2CNJ(X), we get

CNJ(X) ≥ 1

d2

(
1 +

1

α2

)
=

2CNJ(X) + 1

d2 · 2CNJ(X)
,

which implies that

d2 ≥ 2CNJ(X) + 1

2(CNJ(X))2
.

Since the sequence{xn} is arbitrary, we obtain the inequality (2.3).

Using Theorem2.5, we can get a sufficient condition forX to have normal
structure in terms of the von Neumann-Jordan constant.

Corollary 2.6 ([6, Theorem 3.16], [13, Theorem 2]). LetX be a Banach space
with CNJ(X) < (1 +

√
3)/2. ThenX and its dualX∗ have normal structure.
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