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Abstract

In this paper, we study the weakly convergent sequence coefficient and obtain
its estimates for some parameters in Banach spaces, which give some sufficient
conditions for a Banach space to have normal structure.
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A Banach spaceX said to havgweak) normal structurgrovided for every
(weakly compact) closed bounded convex suldsetf X with diam(C') > 0,
contains a nondiametral point, i.e., there exist& C' such thatup{ ||z — o] :
x € C} < diam(C). Itis clear that normal structure and weak normal structure
coincides wherx is reflexive.

The weakly convergent sequence coefficidnt'S(X ), a measure of weak
normal structure, was introduced by Bynum ij &s the following.

Definition 1.1. The weakly convergent sequence coefficietf &f defined by

(1.1) WCS(X)

it {dlama({mn})
ro({zn})
wherediam, ({z,}) = limsup,_, . {||[z, — zm| : n,m > k} is the asymptotic

diameter of{x,,} andr,({z,}) = inf{limsup,,_. . ||z, — y| : y € co({z,})is
the asymptotic radius dfr,, }.

: {z, } is a weakly convergent sequer}cg

One of the equivalent forms &7 C'S(X) is
WCS(X) = inf{ linr;é |Zn — Tl : 20 = 0, ||2,]| = 1

and lim ||z, — 2, exists} :

n,mn#m
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Obviously,1 < W(CS(X) < 2,and itis well known thatVC'S(X) > 1implies
that X has a weak normal structure.

The constanf(a, X), which is a generalized Garcia-Falset coefficieni,[
was introduced by DomingueZ][as: For a given real number> 0,

(1.2) R(a, X) = sup {hm inf ||z + :an} :

where the supremum is taken overalE X with ||z|| < a and all weakly null
sequence$z, } C By such that

(1.3) lim ||z, —z,] < 1.

n,mn#m

We shall assume throughout this paper tBat and Sy to denote the unit
ball and unit sphere ok, respectivelyz,, — x stands for weak convergence of
sequencédz, } in X to a pointz in X.
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TheJames constantr thenonsquare constamvas introduced by Gao and Lau
in[8] as

J(X) = sup{[lz + yl[ Allz =yl : 2,y € Sx}
=sup{[lz +yll Allz =yl - 2,y € Bx}.

A relation between the constafi1, X)) and the James constantX') can be
found in [5, 17]:
R(1,X) < J(X).

We now state an inequality between the James congtaa} and the weakly
convergent sequence coefficiéfitC'S (X).

Theorem 2.1.Let X be a Banach space with the James constdiif ). Then

J(X) +1
(J(X))?

Proof. If J(X) = 2, it suffices to note that’C'S(X) > 1. Thus our estimate is
a trivial one.

If J(X) < 2, thenX is reflexive. Let{z,} be a weakly null sequence in
Sx. Assume thatl = lim,, , m ||z, — 2., || €Xists and consider a normalized
functional sequencér’ } such thate? (z,,) = 1. Note that the reflexivity of
guarantees, by passing through the subsequence, that there:existé* such
thatz* = 2*. Let0 < ¢ < 1 and chooséV large enough so that*(zy)| < €/2
and

2.1) WCS(X) >

d—e<|zy —xpn| <d+e€
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for all m > N. Note that

Tn — T
d—+ e

TN

< 1.
d+ e

lim
n,m,n#m

<1 and ‘

Then by the definition oR(1, X'), we can chooséd/ > N large enough such

that

TN+ Ty
d—+ e

HSR(LX)—}-GSJ(X)—}—E, |(zh, — ") (xn)| < €/2,

and|z%, (xar)| < €. Hence

|25 (2n)| < |(23 — 27)(@n))| + |27 (zn)] <€
Puta = J(X),

TN — Ty TN+ Ty
r=""—"" and y:<

d+e d+e)(a+e)

It follows that||z|| < 1,||y|| < 1, and also that

1
||x—|—y|| = WH(Q—'_ 1 +€)1’N — (Oé— 1 —|—6).TM||
1 R x
> m((a—i— 1+ e)zy(zy) — (a—1 +e)xN(acM))
a+1—c¢
@+ aata
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1
Z;((
(d+e)(a+e)

a+1—e

At oate

a+l+exy(ry)—(a—1+ E)ﬁw(fﬂN))

Thus, from the definition of the James constant,

a+1—e€
T(X) 2 (d+€)(a+e€) -

J(X)+1—¢€
(d+e)(J(X)+e)

Lettinge — 0, we get
J(X)+1
d>—=———.
- (J(X))?
Since the sequende:,, } is arbitrary, we get the inequality (1). O

As an application of Theorer.1, we can obtain a sufficient condition for
X to have normal structure in terms of the James constant.

Corollary 2.2 ([4, Theorem 2.1]). Let X be a Banach space withi(X) <
(1++/5)/2. ThenX has normal structure.

Themodulus of smoothnefs/] of X is the functionpx (7) defined by

px (1) = sup{”x—'—Ty” ; lz =7yl _ l:xz,y€ SX}.
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It is readily seen that for any, y € Sy,
le+yl| <[letryl[+(1-7) (0<7<1),

which implies that/ (X) < px(7) + 2 — 7.
In [2], Baronti et al. introduced a constadt(.X ), which is defined by

T+ Y|+ [T —
oyl +| y“;x,yesx}.

Ax(X) = px(1) +1 = sup{

It is worth noting thatd,(X) = A (X™).
We now state an inequality between the modulus of smoothnegs and
the weakly convergent sequence coefficiént’s(X).

Theorem 2.3.Let X be a Banach space with the modulus of smoothpe§s).
Then for any) < 7 < 1,

px(T) +2
(px (1) + D(px (1) =7 +2)

(2.2) WCS(X) >

Proof. Let0 < 7 < 1. If px(7) = 7, it suffices to note that

T+ 2
2(r+1) —

px(T) + 2 _
(px(7) + 1) (px (1) =7 +2)
Thus our estimate is a trivial one.

If px(7) < 7, thenX is reflexive. Let{x,, } be a weakly null sequence K.
Assume thatl = limn, m,n # m||x, — z,,|| exists and consider a normalized
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functional sequencéx’} such thatz*(z,) = 1. Note that the reflexivity of
X guarantees that there exists € X* such thatz* = z*. Lete > 0 and
Tz, TN, v andy selected as in Theorethl Similarly, we get

alT)+717—¢
(d+€)(a(r) +e)’
wherea(r) = px(7) + 2 — 7. Then by the definition opx (7), we obtain
alt)+7—c¢

£ 7yl =

) 2 G e !
Lettinge — 0,
al(T)+T1 x(7)+ 2
px(m)+12 ﬁza)(f) - d(pg(T() )— T+2)
which gives that
px(T)+2
~ (ox(7) + D(px(T) =7 +2)

Since the sequende:,, } is arbitrary, we get the inequality (). O

Itis known that ifpx (7) < 7/2 for somer > 0, thenX has normal structure

(see P]). Using Theoren?.3, We can improve this result in the following form:

Corollary 2.4. Let X be a Banach space with

T—24+124+4
2

for somer € (0,1]. ThenX has normal structure. In particular, iflo(X) <
(1++/5)/2,thenX and its dualX* have normal structure.

px(T) <
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In connection with a famous work of Jordan-von Neumann concerning inner
products, thelJordan-von Neumann constafit;;(X) of X was introduced by
Clarkson (cf. [, 11]) as

|z +ylI* + [lz — y?
CNJ(X) = sup {
211> + [ly[I1*)

A relationship betweed (X') andCx;(X) is foundin ([L1] Theorem 3):J(X) <

\/2CNJ(X).

In [5], Dhompongsa et al. proved the following inequali®y3). We now re-

: x,y € X and not both zer}).

Some Estimates on the Weakly
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state this inequality without the ultra product technique and thedfagtX ) = Coefficient in Banach Spaces
CNJ (X*) Fenghui Wang and Huanhuan Cui
Theorem 2.5 (F] Theorem 3.8).Let X be a Banach space with the von Neumann-
Jordan constan€y;(X). Then Tiie/Page
20n1(X) + 1 Contents
2.3) wesE)y > ) 1
2(Cny(X)) « »
Proof. If Cx;(X) = 2, it suffices to note thatV C'S(X) > 1. Thus our esti- < >
mates is a trivial one. P——
If Cni(X) < 2, thenX is reflexive. Let{z,,} be a weakly null sequence in orac
Sx. Assume thatl = lim,, ,,, £ |2, — 1, || €XiSts and consider a normalized Close
functional sequencér’ } such thate} (z,,) = 1. Note that the reflexivity ofX Quit

gurantees that there esistsc X* such that:* - z*. Lete > 0 and chooseV

large enough so that*(zy)| < €/2 and Page 10 of 14
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for all m > N. Note that

TN
d+e

Tp — Tm

< 1.
d—+e€

lim
n,m,n#m

<1 and ‘

Then by the definition of?(1, X'), we can chooséd/ > N large enough such

that

IN —TM
d+e

and|z%, (xar)| < €. Hence

| (en)| < (@ = 2%)(2n)] + 2" (zn)] < e

Puta = /20x;(X), z = o®(zny — xp), y = zy + ). It follows that||z|| <

a?(d+e), |yl < (a+¢€)(d+ ¢), and also that
Iz + gl = (0® + Dy — (a® = Dayl|
> (o + Day(on) = (o = Dy (en)
> a? + 1 — 3¢,
lz = yll = [l(a® + Dxas — (0® = Dax|
> (o + Daj(zu) — (0 = Dayy(on)
>a? +1 - 3e
Thus, from the definition of the von Neumann-Jordan constant,
2(a® +1 — 3¢)?
Cny(X) = 2(at(d + £)2 + (a+ e))2(d 1 6)?)
1 (a® 4+ 1 — 3¢)?
d+e? a‘+(a+e?

HSR(I,X)+E§ 2003 (X)) +€,  |(xy —x")(zN)| < €/2,
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Sincee is arbitrary andv = /2Cx;(X), we get

1)  20w(X)+1
Cd?-20y5(X)’

a2

1
CraX) 2 5 (14

which implies that
20Ny (X) + 1
2 >"—"""r
— 2(Cn(X))?

Since the sequende:,, } is arbitrary, we obtain the inequalit Q). O

Using Theoren®.5, we can get a sufficient condition fof to have normal
structure in terms of the von Neumann-Jordan constant.

Corollary 2.6 ([6, Theorem 3.16], [L3, Theorem 2]). Let X be a Banach space
with Cx;(X) < (14 +/3)/2. ThenX and its dualX* have normal structure.
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