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1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a separable complex Hilbert space
H. A unitarily invariant norm|||-||| is a norm on the space of operators satisfyling||| =
|||[UAV|]|| for all A and all unitary operator§ andV in B(H). Except for the operator norm,
which is defined on all oB(H ), each unitarily invariant norrfj|-||| is defined on a norm ideal
Cj. contained in the ideal of compact operators. When we talk|df|| we are implicitly
assuming thatl belongs taC). .

The absolute value of an operatére B(H ), denoted by A|, is defined by A| = (A*A)'/2,

Let s (A), s2(A), ... be the singular values of the compact operatpr.e., the eigenvalues of
| A, rearranged such that(A) > so(A) > ---.

Forp > 0 and for every unitarily invariant nori|-||| on B(H ), define

1
A N® = Il AP

It is known that
1 1 1
(1.1) 1A+ BPIM < |1 TAPIMP -+ 11BN
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2 KHALID SHEBRAWI AND HUSSIENALBADAWI

forp > 1and
(1.2) 1A+ B < 2/ (J1APIY + 111 B

for0 < p < 1 (see e.g.,[]1, p.p. 95,108]). Based on the definition| |qq|<p> and inequality

(1.1), it can be easily seen th#t|||* is a unitarily invariant norm fop > 1.
For0 < p < oo, let

nmf«Zﬁm05

i=1
If p > 1, thenl|-||, is a norm, called the Schattgmorm. So,
1
Al = (e},

wheretr is the usual trace functional. When= 1, ||A||, is called the trace norm of. Note
that for all positive real numbersandp, we have

(1.3) A, = AL, -

For the theory of unitarily invariant norms, the reader is referreditol[1],[[3],[I8],[9], [10], and
the references therein.

The Minkowski’s inequality for scalars asserts that.if b; (: = 1,2,...,n) are complex
numbers ang) > 1, then

1 1 1
(Z\aﬁw) S(ZW"') +<Z\biv’> :
=1 =1 =1

Hiai and Zhanl[[4], proved that ifi,, A, B;, B, are matrices of ordet and1 < p,r < oo,
then

(14) [ A+ Ao+ By + Bl
< V(|| LAP + B + 11 Ao + 1BoP 7))

(1.5) | Ay + Asf” + | By + Bol||}/”
< 200 <H|A1|p + B+ 1A+ |32|p||i/p> ’

and

@6) ||+ AP 1B+ BoP)

r

< 9lt/p=1/1] (H(’Aﬂp n |B1|p)1/p

+ |[(14ap + Baf?) P

These inequalities are norm inequalities of Minkowski type.

The purpose of this paper is to establish new operator norm inequalities. Our inequalities
generalize the inequalities (1.4), (L.5), and|(1.6) /iertuple of operators. Our analysis is
based on some recent results on convexity and concavity of functions and on some operator
inequalities.
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2. NORM INEQUALITIES OF MINKOWSKI TYPE

In this section, we generalize inequality (1.4) for operatdssB; € B(H) (i = 1,2,...,n),
and other norm inequalities of Minkowski type. To achieve our goal we need the following two
lemmas. The first lemma can be foundlin [2] and a stronger version of the second lemma can

be found in[[5].

Lemma?2.1.Let A,
norm,

(2.1)
forr > 1 and
(2.2)

for0 <r <1.

Lemma2.2.Let A;,
norm,

(2.3)
forr > 1and
(2.4)

for0 <r < 1.

..., A, € B(H) be positive operators. Then, for every unitarily invariant

Il <[l 5+
&) <=

..., A, € B(H) be positive operators. Then, for every unitarily invariant

I%)

S
1=1

<

S
=1

<

< nr—l

S
=1

AZ)

n

(&

=1

S nl—'/‘

Now, we are in a position to generalize (1.4).

Theorem 2.3.Let A;, B, € B(H) (i = 1,2,...,n) andp > 1. Then, for every unitarily

invariant norm,

(2.5) n VPPN A+ B < [ID 1A |+ ||[Do 1Bl
=1 =1 =1
and
.0 \ sl st s
=1 =1
< i \zmﬁw llsia - e
=1 =1
Proof. Let
Al 0 0 B1 0 0
Ay 0 0 By, 0 0
= . . and B = o .
A, O 0 B, 0 0
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be operators iB (P, H). Then

Z?:1|Az‘|2 0o --- 0 Z?:1|BZ.’2 0 --- 0
AP = : A |BI" = : A
0 0 0 0 0 0
and
S JA+BT 0 - 0
9 0 0O --- 0
A+ BP = :
0 0 - 0
By applying [1.1) to the operator$ and B, we get
1 I .-

(2.7) <Z |A; + Bﬁ) < (Z |Ai|2>

Forl < p <2, itfollows, from (2.2) and[(2}4), that

(2.8) (va?) < Z|Ai|p ,

N ]
R
»

2
! )
=1

(2.9) (Z !Bﬁ) S IBiP||],

<
=1 =1
and
n n g
(2.10) ‘ > A+ BifP||| < n' P2 (Z |A; + BZ-|2>
=1 =1

Now, inequality [(2.5) follows by combining (2.8), (2.9), and (2.10)[by](2.7).
Forp > 2, it follows, from (2.1) and[(2]3), that

DA+ BiP||| < (Z !A¢+Bi|2> :
=1 =1

(2.11) ‘

[SiS]

(2.12) (Z |Az»|2> < /2!
=1

and

(2.13) (i: |Bi|2> < P2t

=1

Dol
=1

[SMIS]

n

> B

=1

Consequently, inequality (3.5) follows, by combinifng (2.1[), (2.12), and(2.13) by (2.7). This
completes the proof of inequality (2.5).
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For inequality [(2.B), replacingl, and B; in (2.5) by A; + B; and A; — B;, respectively, we

have
n 1 n 1 n 1
@14)  2|[D AP <AV DA+ B+ || 1A - Bif”
=1 =1 =1
Again, replacing4; andB; in (2.5) by A; + B; andB; — A;, respectively, we have
15)  2|[D_[B||| <AV DA+ B[] +][D 1A - Bl
=1 =1 =1

Now, inequality [2.B) follows, by adding inequalitigs (2.14) apd (R.15). This

proof of the theorem.

completes the
[

Based on inequality (1.2) and using a procedure similar to that given in the proof of Theorem
[2.3, we have the following result.

Theorem 2.4.LetA;,, B, € B(H) (i =1,2,...

invariant norm,

1 1 1
(2.16) 27V PRAHIN A 4+ Byl < ‘ZMA” +{|[> 1Bl
=1 =1 =1
and
" 1 n 1
@17) [|D_1AP|] +||DC 1Bl
=1 =1

< ol/p=1,11/p=1/2|

1
P

> A+ Bif”
i=1

_|_

2": [Ai — Bif”
=1

,n)and0 < p < 1. Then, for every unitarily

1
I3

Forp > 1 inequalities[(2.6) and (2.6) can be written in equivalent forms as follow:

(2.18) p~1/P=1/2] (Z |A; + B#’)
=1

and

(2.19) (Z |A,-|p>

(p)

< plUp=172

+

(»)

D=

(»)
+

= (i |Az‘|p> p
=1

. 1 (»)
501
i=1

(p)

(&)

(p)

(»)

i=1 1=1

In the following theorem we give inequalities related to inequalifies {2.18) [and] (2.19). In
order to do that we need the following lemma, which is a particular case of Theorem!2 in [7].

J. Inequal. Pure and Appl. Matt9(1) (2008), Art. 26, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 KHALID SHEBRAWI AND HUSSIENALBADAWI

Lemma 2.5.LetA;, B; € B(H) (i=1,2,...,n)andp > 2. Then

(2.20) <Z |Ai|2> < pl/2=1/p (Z |Ai|p>
i=1 =1

for every unitarily invariant norm.

1
p

Theorem 2.6.Let A;,B; € B(H) (i = 1,2,...,n) andp > 2. Then, for every unitarily
invariant norm,

(2.21) p -YP) (Z\Aﬁm”) < (Zmﬁ’)

i=1 i=1

1

gy

=1

S =

and

(2.22) (Z |A,-|p>

1

T <Z |Bi|p) :
=1
1 1

< pl-lr <Z|Ai+Bi|p> + (Zmi—givﬂ)

i=1 =1

Proof. By using [2.2),[(2.4)[(2]7), anfl (2]20), respectively, we have
(ZIAﬁBi!p) > 14i + B i
i=1 i=1

n'2 1 DA + Bif?

=1

1 1
()] )|+ (e
i=1 =1

IN

N

IN

IN
S

< i (iwy . (iw)”

i=1 i=1

This proves inequality (2.21). Inequalify (2]22) follows from inequality (2.21) by a proof similar
to that given for inequality] (2]6) in Theorgm 2.3. The proof is complete. O

It is known that for a positive operatar and for0 < r» < 1, we have
(2.23) A" < [[]A™]]

for every unitarily invariant norm; and the reverse inequality holds-for 1.
Using inequality[(2.23) we have the following application of Theofer 2.6.

Corollary 2.7. Let A;,B; € B(H) (i = 1,2,...,n) andp > 2. Then, for every unitarily
invariant norm,
1 1 1

e )

i=1 i=1

n

> A+ Bif”

=1

3

(2.24) n~U=1/P)
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and

hSA

1
P

(2.25) +

D IAP
=1

Z|Bz‘|p
=1
< pioi/r ‘ <i|Ai+Bi|p> + <i|Ai—Bi|p>p

i=1 =1

hSAl

Remark 2.8. In view of (2.5), [2.21L), and (2.23), one might conjecture thalifB; € B(H) (i =

1,2,...,n), then, for every unitarily invariant norm,
N 1 1 1
(2.26) (Z |A; + Bi]p> <P PN AP+ ][] 1Bl
=1 i=1 =1
forp>1and
n ) n - n .
(2.27) | (Z |4, +B,-|P> <= LSR8
=1 =1 =1
forp > 2.

Remark 2.9. Using the same procedure used in the proof of inequélity (2.6) in Theorem 2.3,
inequalities[(T1.]L) and (1.2) imply that

1 1 1 1
(2.28) AP + 11 BPIM < I A+ BIPIYP + 111 1A — BPP||IMP
forp>1and

1 1 _ 1 1
(2.29) AP + 1B < 24271 1A+ BPIIMYP + (1| |A = BIP|I[Y™)

for0 < p < 1. Forp > 1, it follows, from the triangle inequality for norms and a scalar
inequality, that

(230)  [[[|A+ B +|A=BPI" < (I[1A+BPI7 +1[11A = BPIIIY
Forp > 2, the left hand side of (2.30) is the right hand side of the famous Clarkson inequality
(2.31) 2/[[ 1A+ [BPIIl < [l |[A+ BF + A+ Bl

see e.g.,[[6]. In view of the inequalities (2/29) and (2.30) we may introduce the following
question: Fop > 2 are the following inequalities:

(2.32) AP + 1 BIPIMP < (] 1A + BIP +]A - BP|||M?
and

p
(2.33) 2[11AP + BN < (I AP+ 1 BEN)
true?

Inequalities[(2.32) andl (2.B3), if true, form a refinement of the Clarkson inequality (2.31).
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3. NORM INEQUALITIES OF MINKOWSKI TYPE FOR THE SCHATTEN P—NORM

In this section, we present some norm inequalities of Minkowski type for the Sclpattesrm.
These inequalities generalize the inequalifies| (1.5) (1.6) forduple of operators.

Theorem 3.1.LetA;, B, € B(H) (i=1,2,... ,n) and1 < p,r < co. Then

(3.1) n—(=1/m)/p Z‘A +B|p Z|A|p i|Bi|p ’
=1 r r i=1 r
and
(3-2) > AP > B
i=1 r i=1 r

1 1/r)/p

Proof. It follows, from (1.3) and the triangle inequality, that

Lo IfTA+B 0 0
ol 0 Ay+B, - 0
| 0 0 oo A+ By
TA 0 oo 0] B, 0 --- 0
0 Ay, --- 0 0 By --- 0
- : : .. : - : : .. :
L0 0 - A, ] 0O 0 --- B, o
A 0 - 0T B, 0 --- 0
0 Ay, --- 0 0 By --- 0
< S : + S :
L0 0 - A, ] 0O 0 --- B,
pr pr
" e "
(3.3) = > 1A+ 1
=1 1

Now, by using @),@3)[@].3), and (2.2), respectively, we have

A

pr

1

pr

(r—1)/pr Z’A _i_B‘Pr
=1 1
1 1
n pr n pr
< n(lfl/r)/p Z |Ai|p7" + Z ’Bilpr
=1 1 =1 1
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hSA
3=

1
S| |(Sie) | (S
=1

n 5
< p=1/m)/p Z |AP|| +

This proves inequality (3]1). The proof of inequality (3.2) follows frgm|(3.1) by a proof similar
to that given for inequality (2]6) in Theorgm P.3. The proof is complete. O

The following is our final result.

Theorem 3.2.LetA;, B; € B(H) (i =1,2,...,n)and1 < p,r < co. Then

(3.4) O (Z|Az‘+Bi|p) < <Z|Ai|p) (Z|Bi|p>
=1 =1 =1

T 7 s

RS

and

(3.5) (DAA”) + (DBAP)

1 1
< plt/pt/r (Z |A;i + B1:|p> + (Z |A; — Bz'|p>
i—1 i=1

Proof. First suppose that < p. By using [1.8),[(2.2)] (3]3), anfl (2.4), respectively, we have

1
s

S

(i |A; + Bi|p> = (i |A; + Biyp) :
=1 ]

=1
r ! 1

IN

S =

IN

+I>_ 1Bl
i=1

S|= =
R

B3

< nl/r=1/p <Z ‘A1|P> + <Z |Bi|p>
i=1 i=1

3=

— pl/r=1/p (zn: |Ai|p> + <2n: |Bi|p> P
i=1 i=1
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Next, forp < r, by using [1.B) and (3]1), we have

1 1
n P n P
(Z|Az‘+3i|p) = DA+ Bif
i=1 , i=1 %
1 1
n P n
< pl/P-p/r) Z APl + Z | B;|”
i=1 r i=1 r
) .
n P n P
— pl/p=1/r (Z | AP + (Z |Bi|p>
i=1 i=1

This proves inequality (3}4). The proof of inequality (3.5) follows frgm(3.4) by a proof similar
to that given for inequality] (2]6) in Theorgm P.3. The proof is complete. O

Remark 3.3. For the Schattep—norm, [3.4) is better thah (2.21), andjf < 2 orr(4—p) < 2,
then [3.1) is better thah (2.5).
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