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ABSTRACT. In this paper we give an affirmative answer to an open problem proposed by Quéc
Anh Ng6, Du Duc Thang, Tran Tat Dat, and Dang Anh Tuan [6].
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1. INTRODUCTION

In [6] the authors proved some integral inequalities and proposed the following question:
Let f be a continuous function dh, 1] satisfying

@) [roaz'5" ses

Under what conditions does the inequality

1 1

/ o8 (z)dr > / z° fP(x)dx
0 0

hold for «, 3?

In [1] the author has given an answer to this open problem, but there is a clear gap in the proof
of Lemma 1.1, so that the other results of the paper break down too. In this paper we give an
affirmative answer to this problem by presenting stronger results. First we prove the following
two essential lemmas.

Throughout this paper, we always assume th& a non-negative continuous function on

[0, 1], satisfying [(1.IL).
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Lemma 1.1. If (1.1) holds, then for each € [0, 1] we have

1k 1—$k+2
t"f(t)dt > ——— (k€ N).
[ tr s = ew

Proof. By our assumptions, we have

1 1 1 1 - yQ
/ Yo (/ f(t)dt> dy > / y’HTdy
T Y T

1

1
— 5/ (ykfl . yk+1)dy

o T T
T Rkt2) 2% oyt

On the other hand, integrating by parts, we also obtain
1
+ - / Y f(y)dy

/xly’“1</ylf() ) ky/f dt
:_Exk/z f(t)dt%—z/x v fy)dy

! 1 1 1
x / fdt+ ¢ /yf(y) Y2 kv 2% T ak+)”

1 1 ] )
= ykf(y)dy >af [ ft)dt + —— — =aF + k2

Thus

O

Remark 1. By a similar argument, we can show that Lemmg 1.1 also holds Wwhisra real
number in[1, co). That is

1 :L,a+2

Lt””“>7ﬁ7‘ :

It is also interesting to note that the result|of [5, Lemma 1.3] holds if we take) in Lemma
1.

Lemma 1.2. Let f be a non-negative continuous function[on1] such thatfgc1 f(t)dt >
(0 <z <1). Thenforeach € [0,1] andk € N, we have

o 1—x+
/f = k1
0< [ (50 -0t -

1 1 1 1
— k+1 dt — k dt — k d k+1d
/xf (t)dt /wtf(t)t /otf(t)H/mt ¢
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it follows that

/xl et > /ltkf(t)dt + /1 tFR(t)dt — %4—2(1 — gM?).

T x

By using Lemma 1]1, we get

(1.2) /1 e tat > /ltfk(t)dt

We continue the proof by mathematical induction. The assertion is obvious forl. Let

Ji fE)dt > 52, we show thayf f*+1(t)dt > L zf+2 We have

[ o)z [t

R R
VESRN k+2y N

1 Lo 1 iin
- T x .
k+2 k+1  (k+1)(k+2)

On the other hand, integrating by parts, we also obtain

/xl (/yl fk(t)dt) W=y /yl FE@)dt : + /: yf* (y)dy
— _x/; fk(t)dt—i—/; yf*(y)dy

1 1 1 1 1
) . t / i . B k+2
xéfaw+xyf@y—hw Frl ke k+2)"

and hence

1 1 1 1 1
" S k _ k42
/myf (y)dy_xL O e A GG

1

Thus

. 1—xk+1+ 1 Lo 1 ki
x p—
- k41 k+2 k+1 (k+1)(k+2)
1— ZL’k+2
k+2
So by [1.2) we get
! E+1 k 1—gh+?
Hydt > | tfft)dt > —————
[ o [etons
which completes the proof. O

2. MAIN RESuULTS

Theorem 2.1. Let f be a non-negative and continuous function[on].
(0 <z <1),then for eachm,n € N,

1 1
/ P () > / )
0 0
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Proof. By using the general Cauchy inequality [5, Theorem 3.1], we have

n

m-+n m m+n> m f£n
e [T @) ™ 2 N a),

1 m 1 1
m+n d + / m-i-nd >/ m rn d
/Of (x)dx m+n0x x_oxf(x)x

m

1 1 m 1
/Of Al (:L’)dxz/o " f (x)dx+m+n/0 fm (x)dx_(ern)(m—l—nJrl)

:/0 x f(x)dx+m+n(/0 f +($)dx—m).

By Lemm, we hav%1 fm(z)de > m+1n+1. Therefore
1 1
[ @iz [
0 0

Theorem 2.2. Let f be a continuous function such thatr) > 1 (0 < x < 1). If fxl f&)dt >

which implies

m—+n

Hence

(2.1) ]glf“+ﬁ(x)dx > jglxafﬂ(x)dx

Proof. By a similar method to that used in the proof of Theo@ 2.1 the inequality (2.1) holds
if fo forb(z)dx > +[5+1 So it is enough to prove thg"g fi(x)dx > —5 (v > 0). Since
fla >21<os:c31>and[ | < <[y]+1, wehave

1 1
/ f(x)dx > / () da
0 0
By Lemmd 1.2 we obtain

17$ - l[ﬂx . 1 1

Remark 2. The conditionf(z) > 1 (0 <z < 1)in Theore is necessaryffb]rﬁ(x)dx >
v > 0). For example, let

0
flz) =
22z — 1)

andy = 1, thenf is continuous o0, 1] and [ f(t)dt > =

1
711 (

o
IA
S
IA
N[ —=

<x <1

IN

1
2

2

dx— <3.

In the following theorem, we show that the conditiﬁm) >1(0<z< 1) in Theorenj 2.p
can be removed if we assume that- 7 > 1.
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Theorem 2.3. Let f be a non-negative continuous function pni]. If f ftdt > ==
(0 <z < 1), then for eachy, 5 > 0 such thatv + 5 > 1, we have

/ fa—&-ﬁ 1
“a+p0+1
Proof. By using Theorem A of([5] fory(t) = t, « = 1, a = 0, andb = 1, the assertion is
obvious. 0
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