
Volume 9 (2008), Issue 2, Article 37, 5 pp.

NOTE ON AN OPEN PROBLEM
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ABSTRACT. In this paper we give an affirmative answer to an open problem proposed by Quôc
Anh Ngô, Du Duc Thang, Tran Tat Dat, and Dang Anh Tuan [6].
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1. I NTRODUCTION

In [6] the authors proved some integral inequalities and proposed the following question:
Let f be a continuous function on[0, 1] satisfying

(1.1)
∫ 1

x

f(t)dt ≥ 1− x2

2
, (0 ≤ x ≤ 1).

Under what conditions does the inequality∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx

hold forα, β?
In [1] the author has given an answer to this open problem, but there is a clear gap in the proof

of Lemma 1.1, so that the other results of the paper break down too. In this paper we give an
affirmative answer to this problem by presenting stronger results. First we prove the following
two essential lemmas.

Throughout this paper, we always assume thatf is a non-negative continuous function on
[0, 1], satisfying (1.1).

I am grateful to the referee for his comments, especially for Theorem 2.3.
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Lemma 1.1. If (1.1) holds, then for eachx ∈ [0, 1] we have∫ 1

x

tkf(t)dt ≥ 1− xk+2

k + 2
(k ∈ N).

Proof. By our assumptions, we have∫ 1

x

yk−1

(∫ 1

y

f(t)dt

)
dy ≥

∫ 1

x

yk−1 1− y2

2
dy

=
1

2

∫ 1

x

(yk−1 − yk+1)dy

=
1

k(k + 2)
− 1

2k
xk +

1

2(k + 2)
xk+2.

On the other hand, integrating by parts, we also obtain∫ 1

x

yk−1

(∫ 1

y

f(t)dt

)
dy =

1

k
yk

∫ 1

y

f(t)dt

∣∣∣∣1
x

+
1

k

∫ 1

x

ykf(y)dy

= −1

k
xk

∫ 1

x

f(t)dt +
1

k

∫ 1

x

ykf(y)dy.

Thus

−1

k
xk

∫ 1

x

f(t)dt +
1

k

∫ 1

x

ykf(y)dy ≥ 1

k(k + 2)
− 1

2k
xk +

1

2(k + 2)
xk+2

=⇒
∫ 1

x

ykf(y)dy ≥ xk

∫ 1

x

f(t)dt +
1

k + 2
− 1

2
xk +

k

2(k + 2)
xk+2

≥ xk

(
1

2
− 1

2
x2

)
+

1

k + 2
− 1

2
xk +

k

2(k + 2)
xk+2

=
1− xk+2

k + 2
.

�

Remark 1. By a similar argument, we can show that Lemma 1.1 also holds whenk is a real
number in[1,∞). That is ∫ 1

x

tαf(t)dt ≥ 1− xα+2

α + 2
(∀α ≥ 1).

It is also interesting to note that the result of [5, Lemma 1.3] holds if we takex = 0 in Lemma
1.1.

Lemma 1.2. Let f be a non-negative continuous function on[0, 1] such that
∫ 1

x
f(t)dt ≥ 1−x2

2

(0 ≤ x ≤ 1). Then for eachx ∈ [0, 1] andk ∈ N, we have∫ 1

x

fk(t)dt ≥ 1− xk+1

k + 1
.

Proof. Since

0 ≤
∫ 1

x

(f(t)− t)(fk(t)− tk)dt

=

∫ 1

x

fk+1(t)dt−
∫ 1

x

tkf(t)dt−
∫ 1

0

tfk(t)dt +

∫ 1

x

tk+1dt
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it follows that ∫ 1

x

fk+1(t)dt ≥
∫ 1

x

tkf(t)dt +

∫ 1

x

tfk(t)dt− 1

k + 2
(1− xk+2).

By using Lemma 1.1, we get

(1.2)
∫ 1

x

fk+1(t)dt ≥
∫ 1

x

tfk(t)dt.

We continue the proof by mathematical induction. The assertion is obvious fork = 1. Let∫ 1

x
fk(t)dt ≥ 1−xk+1

k+1
, we show that

∫ 1

x
fk+1(t)dt ≥ 1−xk+2

k+2
. We have∫ 1

x

(∫ 1

y

fk(t)dt

)
dy ≥

∫ 1

x

1− yk+1

k + 1
dy

=
1

k + 1

(
y − 1

k + 2
yk+2

)∣∣∣∣1
x

=
1

k + 2
− 1

k + 1
x +

1

(k + 1)(k + 2)
xk+2.

On the other hand, integrating by parts, we also obtain∫ 1

x

(∫ 1

y

fk(t)dt

)
dy = y

∫ 1

y

fk(t)dt

∣∣∣∣1
x

+

∫ 1

x

yfk(y)dy

= −x

∫ 1

x

fk(t)dt +

∫ 1

x

yfk(y)dy.

Thus

−x

∫ 1

x

fk(t)dt +

∫ 1

x

yfk(y)dy ≥ 1

k + 2
− 1

k + 1
x +

1

(k + 1)(k + 2)
xk+2

and hence∫ 1

x

yfk(y)dy ≥ x

∫ 1

x

fk(t)dt +
1

k + 2
− 1

k + 1
x +

1

(k + 1)(k + 2)
xk+2

≥ x
1− xk+1

k + 1
+

1

k + 2
− 1

k + 1
x +

1

(k + 1)(k + 2)
xk+2

=
1− xk+2

k + 2
.

So by (1.2) we get ∫ 1

x

fk+1(t)dt ≥
∫ 1

x

tfk(t)dt ≥ 1− xk+2

k + 2
,

which completes the proof. �

2. M AIN RESULTS

Theorem 2.1. Let f be a non-negative and continuous function on[0, 1]. If
∫ 1

x
f(t)dt ≥ 1−x2

2

(0 ≤ x ≤ 1), then for eachm, n ∈ N,∫ 1

0

fm+n(x)dx ≥
∫ 1

0

xmfn(x)dx.
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Proof. By using the general Cauchy inequality [5, Theorem 3.1], we have

n

m + n
fm+n(x) +

m

m + n
xm+n ≥ xmfn(x),

which implies

n

m + n

∫ 1

0

fm+n(x)dx +
m

m + n

∫ 1

0

xm+ndx ≥
∫ 1

0

xmfn(x)dx.

Hence∫ 1

0

fm+n(x)dx ≥
∫ 1

0

xmfn(x)dx +
m

m + n

∫ 1

0

fm+n(x)dx− m

(m + n)(m + n + 1)

=

∫ 1

0

xmfn(x)dx +
m

m + n

(∫ 1

0

fm+n(x)dx− 1

m + n + 1

)
.

By Lemma 1.2, we have
∫ 1

0
fm+n(x)dx ≥ 1

m+n+1
. Therefore∫ 1

0

fm+n(x)dx ≥
∫ 1

0

xmfn(x)dx.

�

Theorem 2.2. Let f be a continuous function such thatf(x) ≥ 1 (0 ≤ x ≤ 1). If
∫ 1

x
f(t)dt ≥

1−x2

2
, then for eachα, β > 0,

(2.1)
∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx.

Proof. By a similar method to that used in the proof of Theorem 2.1 the inequality (2.1) holds
if

∫ 1

0
fα+β(x)dx ≥ 1

α+β+1
. So it is enough to prove that

∫ 1

0
fγ(x)dx ≥ 1

γ+1
(γ > 0). Since

f(x) ≥ 1 (0 ≤ x ≤ 1) and[γ] ≤ γ < [γ] + 1, we have∫ 1

0

fγ(x)dx >

∫ 1

0

f [γ](x)dx.

By Lemma 1.2 we obtain∫ 1

0

fγ(x)dx ≥
∫ 1

0

f [γ](x)dx ≥ 1

[γ] + 1
≥ 1

γ + 1
.

�

Remark 2. The conditionf(x) ≥ 1 (0 ≤ x ≤ 1) in Theorem 2.2 is necessary for
∫ 1

0
fγ(x)dx ≥

1
γ+1

(γ > 0). For example, let

f(x) =

0 0 ≤ x ≤ 1
2

2(2x− 1) 1
2

< x ≤ 1

andγ = 1
2
, thenf is continuous on[0, 1] and

∫ 1

x
f(t)dt ≥ 1−x2

2
, but

∫ 1

0
f

1
2 (x)dx =

√
2

3
< 2

3
.

In the following theorem, we show that the conditionf(x) ≥ 1 (0 ≤ x ≤ 1) in Theorem 2.2
can be removed if we assume thatα + β ≥ 1.
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Theorem 2.3. Let f be a non-negative continuous function on[0, 1]. If
∫ 1

x
f(t)dt ≥ 1−x2

2

(0 ≤ x ≤ 1), then for eachα, β > 0 such thatα + β ≥ 1, we have∫ 1

0

fα+β(x)dx ≥ 1

α + β + 1
.

Proof. By using Theorem A of [5] forg(t) = t, α = 1, a = 0, andb = 1, the assertion is
obvious. �

REFERENCES

[1] L. BOUGOFFA, Note on an open problem,J. Ineq. Pure and Appl. Math., 8(2) (2007), Art. 58.
[ONLINE: http://jipam.vu.edu.au/article.php?sid=871 ].

[2] K. BOUKERRIOUA AND A. GUEZANE-LAKOUD, On an open question regarding an integral
inequality,J. Ineq. Pure and Appl. Math., 8(3) (2007), Art. 77. [ONLINE:http://jipam.vu.
edu.au/article.php?sid=885 ].

[3] W.J. LIU, C.C. LI AND J.W. DONG, On an open problem concerning an integral inequality,J.
Ineq. Pure and Appl. Math., 8(3) (2007), Art. 74. [ONLINE:http://jipam.vu.edu.au/
article.php?sid=882 ].

[4] F. QI, Several integral inequalities,J. Ineq. Pure and Appl. Math., 1(2) (2000), Art. 19. [ONLINE:
http://jipam.vu.edu.au/article.php?sid=113 ].

[5] QUÔC ANH NGÔ, On the inverse of an integral inequality,RGMIA Research Report Collection,
10(4) (2007), Art. 10. [ONLINE:http://www.staff.vu.edu.au/RGMIA/v10n4.asp ].

[6] QUÔC ANH NGÔ, DU DUC THANG, TRAN TAT DAT, AND DANG ANH TUAN, Notes on
an integral inequality,J. Ineq. Pure and Appl. Math., 7(4) (2006), Art. 120. [ONLINE:http:
//jipam.vu.edu.au/article.php?sid=737 ].

J. Inequal. Pure and Appl. Math., 9(2) (2008), Art. 37, 5 pp. http://jipam.vu.edu.au/

http:// jipam.vu.edu.au/article. php?sid=871
http://jipam.vu.edu.au/article.php?sid=885
http://jipam.vu.edu.au/article.php?sid=885
http://jipam.vu.edu.au/article.php?sid=882
http://jipam.vu.edu.au/article.php?sid=882
http://jipam.vu.edu.au/article.php?sid=113
http://www.staff.vu.edu.au/RGMIA/v10n4.asp
http://jipam. vu.edu.au/ article.php? sid=737
http://jipam. vu.edu.au/ article.php? sid=737
http://jipam.vu.edu.au/

	1. Introduction
	2.  Main Results
	References

