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ABSTRACT. In this paper a main theorem on|N, pn|k summability factors, which generalizes a
result of Bor [2] on|N, pn| summability factors, has been proved.

Key words and phrases:Nörlund summability, summability factors, power increasing sequences.

2000Mathematics Subject Classification.40D15, 40F05, 40G05.

1. I NTRODUCTION

A positive sequence(bn) is said to be almost increasing if there exist a positive increasing
sequence(cn) and two positive constantsA and B such thatAcn ≤ bn ≤ Bcn (see [1]).
A positive sequence(γn) is said to be a quasiβ-power increasing sequence if there exists a
constantK = K(β, γ) ≥ 1 such that

(1.1) Knβγn ≥ mβγm

holds for alln ≥ m ≥ 1. It should be noted that every almost increasing sequence is a quasi
β-power increasing sequence for any nonnegativeβ, but the converse need not be true as can be
seen by taking the example, sayγn = n−β for β > 0. We denote byBVO theBV ∩ CO, where
CO andBV are the null sequences and sequences with bounded variation, respectively.

Let
∑

an be a given infinite series with the sequence of partial sums(sn) andwn = nan. By
uα

n andtαn we denote then-th Cesàro means of orderα, with α > −1, of the sequences(sn) and
(wn), respectively.

The series
∑

an is said to be summable|C, α|k, k ≥ 1, if (see [4])

(1.2)
∞∑

n=1

nk−1
∣∣uα

n − uα
n−1

∣∣k =
∞∑

n=1

1

n
|tαn|

k < ∞.
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Let (pn) be a sequence of constants, real or complex, and let us write

(1.3) Pn = p0 + p1 + p2 + · · ·+ pn 6= 0, (n ≥ 0).

The sequence-to-sequence transformation

(1.4) σn =
1

Pn

n∑
v=0

pn−vsv

defines the sequence(σn) of the Nörlund mean of the sequence(sn), generated by the sequence
of coefficients(pn). The series

∑
an is said to be summable|N, pn|k, k ≥ 1, if (see [3])

(1.5)
∞∑

n=1

nk−1 |σn − σn−1|k < ∞.

In the special case when

(1.6) pn =
Γ(n + α)

Γ(α)Γ(n + 1)
, α ≥ 0

the Nörlund mean reduces to the(C, α) mean and|N, pn|k summability becomes|C, α|k summa-
bility. For pn = 1 andPn = n, we get the(C, 1) mean and then|N, pn|k summability becomes
|C, 1|k summability. For any sequence(λn), we write∆λn = λn − λn+1.

The known results. Concerning the|C, 1|k and|N, pn|k summabilities Varma [6] has proved
the following theorem.

Theorem A. Let p0 > 0, pn ≥ 0 and(pn) be a non-increasing sequence. If
∑

an is summable
|C, 1|k, then the series

∑
anPn(n + 1)−1 is summable|N, pn|k, k ≥ 1.

Quite recently Bor [2] has proved the following theorem.

Theorem B. Let(pn) be as in Theorem A, and let(Xn) be a quasiβ-power increasing sequence
with some0 < β < 1. If

(1.7)
n∑

v=1

1

v
|tv| = O(Xn) asn →∞,

and the sequences(λn) and(βn) satisfy the following conditions

(1.8) Xnλn = O(1),

(1.9) |∆λn| ≤ βn,

(1.10) βn → 0,

(1.11)
∑

nXn |∆βn| < ∞,

then the series
∑

anPnλn(n + 1)−1 is summable|N, pn|.
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2. M AIN RESULT

The aim of this paper is to generalize Theorem B for|N, pn|k summability. Now we shall
prove the following theorem.

Theorem 2.1. Let (pn) be as in Theorem A, and let(Xn) be a quasiβ-power increasing se-
quence with some0 < β < 1. If

(2.1)
n∑

v=1

1

v
|tv|k = O(Xn) asn →∞,

and the sequences(λn) and(βn) satisfy the conditions from (1.8) to (1.11) of Theorem B; further
suppose that

(2.2) (λn) ∈ BVO,

then the series
∑

anPnλn(n + 1)−1 is summable|N, pn|k, k ≥ 1.

Remark 2.2. It should be noted that if we takek = 1, then we get Theorem B. In this case
condition (2.2) is not needed.

We need the following lemma for the proof of our theorem.

Lemma 2.3([5]). Except for the condition (2.2), under the conditions on(Xn), (λn) and(βn)
as taken in the statement of the theorem, the following conditions hold when (1.11) is satisfied:

(2.3) nβnXn = O(1) as n →∞,

(2.4)
∞∑

n=1

βnXn < ∞.

3. PROOF OF THEOREM 2.1

In order to prove the theorem, we need consider only the special case in which(N, pn) is
(C, 1), that is, we shall prove that

∑
anλn is summable|C, 1|k. Our theorem will then follow

by means of Theorem A. LetTn be then−th (C, 1) mean of the sequence(nanλn), that is,

(3.1) Tn =
1

n + 1

n∑
v=1

vavλv.

Using Abel’s transformation, we have

Tn =
1

n + 1

n∑
v=1

vavλv =
1

n + 1

n−1∑
v=1

∆λv(v + 1)tv + λntn

= Tn,1 + Tn,2, say.

To complete the proof of the theorem, it is sufficient to show that

(3.2)
∞∑

n=1

1

n
|Tn,r|k < ∞ for r = 1, 2, by (1.2).
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Now, we have that

m+1∑
n=2

1

n
|Tn,1|k ≤

m+1∑
n=2

1

n(n + 1)k

{
n−1∑
v=1

v + 1

v
v |∆λv| |tv|

}k

= O(1)
m+1∑
n=2

1

nk+1

{
n−1∑
v=1

v |∆λv| |tv|

}k

= O(1)
m+1∑
n=2

1

n2

{
n−1∑
v=1

v |∆λv| |tv|k
}
×

{
1

n

n−1∑
v=1

v |∆λv|

}k−1

= O(1)
m+1∑
n=2

1

n2

n−1∑
v=1

v |∆λv| |tv|k (by (2.2))

= O(1)
m+1∑
n=2

1

n2

{
n−1∑
v=1

vβv |tv|k
}

(by (1.9))

= O(1)
m∑

v=1

vβv |tv|k
m+1∑

n=v+1

1

n2
= O(1)

m∑
v=1

vβv
|tv|k

v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

|tr|k

r
+ O(1)mβm

m∑
v=1

|tv|k

v

= O(1)
m−1∑
v=1

|∆(vβv)|Xv + O(1)mβmXm (by (2.1))

= O(1)
m−1∑
v=1

|(v + 1)∆βv − βv|Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v |∆βv|Xv + O(1)
m−1∑
v=1

|βv|Xv + O(1)mβmXm

= O(1) asm →∞,

in view of (1.11), (2.3) and (2.4).
Again

m∑
n=1

1

n
|Tn,2|k =

m∑
n=1

|λn|k
|tn|k

n

=
m∑

n=1

|λn|k−1 |λn|
|tn|k

n
= O(1)

m∑
n=1

|λn|
|tn|k

n
(by (2.2))

= O(1)
m−1∑
n=1

∆ |λn|
n∑

v=1

|tv|k

v
+ O(1) |λm|

m∑
n=1

|tn|k

n

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1) |λm|Xm (by (2.1))

= O(1)
m−1∑
n=1

βnXn + O(1) |λm|Xm = O(1) asm →∞,
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by virtue of (1.8) and (2.4). This completes the proof of the theorem. �
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