
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 1, Article 36, 2006

CHARACTERIZATIONS OF TRACIAL PROPERTY VIA INEQUALITIES

TAKASHI SANO AND TAKESHI YATSU

DEPARTMENT OFMATHEMATICAL SCIENCES

FACULTY OF SCIENCE

YAMAGATA UNIVERSITY

YAMAGATA 990-8560, JAPAN.
sano@sci.kj.yamagata-u.ac.jp

Received 13 October, 2005; accepted 08 December, 2005
Communicated by F. Hansen

Dedicated to Professor Marie Choda on the occasion of her 65th birthday.

ABSTRACT. In this article, we give characterizations of a tracial property for a positive linear
functional via inequalities; we have necessary and sufficient conditions for a faithful positive
linear functionalϕ to be a positive scalar multiple of the trace by inequalities: for a non matrix
monotone, increasing functionf ,

X 5 Y ⇒ ϕ(f(X)) 5 ϕ(f(Y ))

is considered. Also for a non matrix convex, convex functionf ,

ϕ

(
f

(
X + Y

2

))
5 ϕ

(
f(X) + f(Y )

2

)
is studied. We also show that suppose

0 5 ϕ (pm,k (X, Y ))

for all X, Y = O, thenϕ should be a positive scalar multiple of the trace. Here,pm,k(X, Y ) is
the coefficient oftk in the polynomial(X + tY )m and1 5 k 5 m− 1.

Key words and phrases:Trace; Inequality; Non matrix monotone function of order 2; Non matrix convex function of order2;
Bessis-Moussa-Villani conjecture.
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1. I NTRODUCTION

In operator theory, matrix monotone functions and matrix convex ones have played a signif-

icant role, for instance, see [3, 4, 1, 2]. A real-valued continuous functionf on an intervalI
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2 T. SANO AND T. YATSU

(j R) is called matrix monotone of ordern if X 5 Y implies f(X) 5 f(Y ) for all n × n

Hermitian matricesX andY with eigenvalues inI. If f is matrix monotone of all orders,f is

said to be matrix monotone or operator monotone. Whenf is matrix monotone of ordern, for

a positive linear functionalϕ onn× n matrices, we have

X 5 Y ⇒ ϕ(f(X)) 5 ϕ(f(Y ))

for n×n Hermitian matricesX andY. Also, for an increasing functionf and Hermitian matrices

X andY with X 5 Y ,

Tr(f(X)) 5 Tr(f(Y ))

holds in whichTr is the standard trace on matrices (for more details, see the argument at the

beginning of Section 2).

A real-valued continuous functionf on an intervalI (j R) is called matrix convex of order

n if the inequality

f

(
X + Y

2

)
5

f(X) + f(Y )

2

is satisfied for alln × n Hermitian matricesX andY with eigenvalues inI. If f is matrix

convex of all orders,f is said to be matrix convex or operator convex. Whenf is matrix convex

of ordern, for a positive linear functionalϕ onn× n matrices,

ϕ

(
f

(
X + Y

2

))
5 ϕ

(
f(X) + f(Y )

2

)
holds forn× n Hermitian matricesX andY with eigenvalues inI. And for a convex function

f and Hermitian matricesX andY, we have

Tr

(
f

(
X + Y

2

))
5 Tr

(
f(X) + f(Y )

2

)
(see basic facts on Jensen’s inequalities explained before the proof of Theorem 3.3).

In this article, we give characterizations of tracial properties for positive linear functionals via

inequalities; we have necessary and sufficient conditions for a faithful positive linear functional

ϕ to be tracial by inequalities: for a non matrix monotone, increasing functionf ,

X 5 Y ⇒ ϕ(f(X)) 5 ϕ(f(Y ))

is considered. Also for a non matrix convex, convex functionf ,

ϕ

(
f

(
X + Y

2

))
5 ϕ

(
f(X) + f(Y )

2

)
is studied. We have a criterion of non matrix monotonicity of order2 or non matrix convexity

of order2. We show a necessary and sufficient condition for the function

X 7→ {Tr(|X|pC)}
1
p

(p > 2) to be a norm; the function is essentially the Schattenp-norm.
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TRACIAL PROPERTY VIA INEQUALITIES 3

We also observe an inequality given by a coefficient of a certain polynomial: letpm,k(X, Y )

be the coefficient oftk in the polynomial(X + tY )m for X,Y ∈ Mn(C), m ∈ N, andt ∈ C
and1 5 k 5 m− 1. Suppose that

0 5 ϕ (pm,k (X, Y ))

for all X, Y = O. Thenϕ should be a positive scalar multiple of the trace (see the remark of

Proposition 3.1 about the BMV conjecture).

We remark that divided differences are useful in this article: we refer the reader to [4, 2, 6].

We would like to express our sincere gratitude to Professor Tsuyoshi Ando for reading the

previous manuscripts and for fruitful comments. We would like to thank the members of

Tohoku-Seminar for valuable advice, especially Professor Sin-ei Takahashi for useful com-

ments on Proposition 2.1 and Professor Fumio Hiai for pointing out the BMV conjecture to us.

We are also grateful to the editor and the referee for careful reading of the manuscripts and for

helpful comments.

2. I NEQUALITIES OF NON M ATRIX M ONOTONE FUNCTIONS

Let Mn(C) be the set of all complexn-square matrices and letϕ be a faithful positive linear

functional onMn(C). Let f be an increasing function onI = (a, b). For Hermitian matrices

X, Y ∈ Mn(C) with a1 < X 5 Y < b1,

λi(X) 5 λi(Y )

for i = 1, 2, . . . , n in which λi is the i-th eigenvalue withλ1 = λ2 = · · · = λn. Sincef is

increasing,

λi(f(X)) = f(λi(X)) 5 f(λi(Y )) = λi(f(Y )).

Hence, it follows that

Tr(f(X)) =
n∑

i=1

λi(f(X)) 5
n∑

i=1

λi(f(Y )) = Tr(f(Y )).

Let us study the following inequality for a strictly increasing, differentiable functionf on

I = (a, b) andε ∈ [0, 1] :

f ′(λ)α2(1 + ε)− 2α
√

1− α2
f(λ)− f(µ)

λ− µ
(1− ε) + f ′(µ)

(
1− α2

)
(1 + ε) = 0

for all µ, λ ∈ I (µ < λ) and allα ∈ [0, 1]. By considering0 < α < 1, we have the equivalent

inequality
α√

1− α2
f ′(λ) +

√
1− α2

α
f ′(µ) = 2

1− ε

1 + ε
· f(λ)− f(µ)

λ− µ

for all µ, λ ∈ I (µ < λ) and allα ∈ (0, 1). Let

t :=
α√

1− α2
, δ :=

1− ε

1 + ε
.
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4 T. SANO AND T. YATSU

Then notice that

0 < α < 1 ⇔ 0 < t < ∞, 0 5 ε 5 1 ⇔ 0 5 δ 5 1,

andε = 1 if and only if δ = 0. The corresponding inequality is described as

1

2

(
tf ′(λ) +

1

t
f ′(µ)

)
= δ

f(λ)− f(µ)

λ− µ

for all 0 < t < ∞ and allµ, λ ∈ I (µ < λ). Hence, by considering arithmetic-geometric mean

inequality in the left-hand side, we have√
f ′(λ)f ′(µ) = δ

f(λ)− f(µ)

λ− µ
.

In this case, the conditionε = 1 or δ = 0 is given by

inf
λ>µ

√
f ′(λ)f ′(µ)
f(λ)−f(µ)

λ−µ

= 0.

We summarize our observation as follows:

Proposition 2.1. Let f be a strictly increasing, continuously differentiable function onI =

(a, b) andε ∈ [0, 1]. Suppose that

inf
λ>µ

√
f ′(λ)f ′(µ)
f(λ)−f(µ)

λ−µ

= 0.

Then the inequality

f ′(λ)α2(1 + ε)− 2α
√

1− α2
f(λ)− f(µ)

λ− µ
(1− ε) + f ′(µ)(1− α2)(1 + ε) = 0

holds for allµ, λ ∈ I (µ < λ) and allα ∈ [0, 1] if and only ifε = 1.

The following are examples:

xp(p > 1) on (0, a), xp(p > 1) on (a,∞),

ex on (a,∞), ex on (−∞, a)

for a constanta.

By direct computations, it is easy to see that each example satisfies the condition so details

are left to the reader.

Theorem 2.2. Let ϕ be a faithful positive linear functional onMn(C) and letf be a function

as in Proposition 2.1. Then

(2.1) ϕ(f(X)) 5 ϕ(f(Y )) whenever aI < X 5 Y < bI

if and only ifϕ is a positive scalar multiple of the trace.
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TRACIAL PROPERTY VIA INEQUALITIES 5

Proof. At the beginning of this section it was explained that ifϕ is a positive scalar multiple

of the trace then the inequality (2.1) holds. We show the converse: since there is uniquely a

positive definite matrixD such thatϕ(X) = Tr(XD) for X ∈ Mn(C), we have to prove that

D is a positive scalar multiple of the identity matrix. Taking into consideration

ϕ (V ∗ · V ) = Tr (· V DV ∗)

for all unitaryV and thatV DV ∗ is diagonal for a unitaryV , we assume thatD is a diagonal

matrix diag(d1, . . . , dn). To show thatdi = dj for any pair ofdi, dj (i 6= j), we consider

matricesX = (xkl) with xkl zero except for(k, l) = (i, i), (i, j), (j, i), (j, j). Hence, it suffices

to consider the casen = 2 so that we suppose

D = diag(ε, 1)

for a numberε (0 < ε 5 1). We show thatε = 1.

Let

U =
1√
2

(
1 1
1 −1

)
, Aλ,µ =

(
λ 0
0 µ

)
, Pα =

(
α2 α

√
1− α2

α
√

1− α2 1− α2

)
for λ, µ(λ 6= µ, a < λ, µ < b), α (0 5 α 5 1). For all t > 0,

UAλ,µU
∗ 5 U(Aλ,µ + tPα)U∗,

anda1 < Aλ,µ + tPα < b1 for smallt > 0. Then, by assumption

Tr(Uf(Aλ,µ)U∗D) 5 Tr(Uf(Aλ,µ + tPα)U∗D).

This implies that
d

dt
Tr(Uf(Aλ,µ + tPα)U∗D)

∣∣∣∣
t=0

= 0.

Also, the standard fact, see [2, page 124] for instance, yields

d

dt

∣∣∣∣
t=0

f(Aλ,µ + tPα) =

(
f ′(λ) f(λ)−f(µ)

λ−µ

f(λ)−f(µ)
λ−µ

f ′(µ)

)
◦ Pα

=

(
f ′(λ)α2 f(λ)−f(µ)

λ−µ
α
√

1− α2

f(λ)−f(µ)
λ−µ

α
√

1− α2 f ′(µ)(1− α2)

)
,

where◦ stands for the Hadamard (i.e., entry-wise) product. Hence, it follows that

0 5
d

dt
Tr(f(Aλ,µ + tPα)U∗DU)

∣∣∣∣
t=0

= Tr

(
d

dt

∣∣∣∣
t=0

f(Aλ,µ + tPα

)
· U∗DU)

= Tr

((
f ′(λ)α2 f(λ)−f(µ)

λ−µ
α
√

1− α2

f(λ)−f(µ)
λ−µ

α
√

1− α2 f ′(µ)(1− α2)

)
· 1

2

(
1 + ε −(1− ε)

−(1− ε) 1 + ε

))

=
1

2

{
f ′(λ)α2(1 + ε)− 2α

√
1− α2

f(λ)− f(µ)

λ− µ
(1− ε) + f ′(µ)(1− α2)(1 + ε)

}
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6 T. SANO AND T. YATSU

for all α, λ, µ. Therefore, thanks to Proposition 2.1, the proof is completed. �

In the proof of Theorem 2.2, a criterion of non matrix monotonicity of order2 is obtained:

Corollary 2.3. Let f be a function as in Proposition 2.1. Thenf is not matrix monotone of

order2.

As a corollary of Theorem 2.2, we have

Theorem 2.4. Let C ∈ Mn(C) be a positive definite matrix and letp > 2 be given. Then the

function

µ(X) := Tr(|X|pC)
1
p (X ∈ Mn(C))

is a norm if and only ifC is a positive scalar multiple of the identity matrix.

Proof. Suppose thatµ is a norm. Then, by definition

µ(UX) = µ(X)

for all unitaryU . For positive semidefinite matricesX, Y with X 5 Y , there is a contraction

V such thatX
1
2 = V Y

1
2 andV is a convex combination of unitary matrices:V =

∑N
i=1 λiUi,

whereλi = 0, Uj is unitary(j = 1, 2, . . . , N) and
∑N

i=1 λi = 1. Hence, we have

µ
(
X

1
2

)
= µ

((
N∑

i=1

λiUi

)
Y

1
2

)
5

N∑
i=1

λiµ
(
UiY

1
2

)
= µ

(
Y

1
2

)
sinceµ is a norm. Therefore, the faithful positive linear functional onMn(C) defined by

ϕ(·) := Tr(· C)

satisfies

O 5 X 5 Y =⇒ ϕ
(
X

p
2

)
5 ϕ

(
Y

p
2

)
.

Sincep
2

> 1, it follows from Theorem 2.2 thatC is a scalar multiple of the identity matrix; the

proof is completed. �

3. I NEQUALITIES OF NON M ATRIX CONVEX FUNCTIONS

Let us start this section with the following observation of tracial properties:

Proposition 3.1. Let ϕ be a faithful positive linear functional onMn(C). Let pm,k(X, Y ) be

the coefficient oftk in the polynomial(X + tY )m for X, Y ∈ Mn(C), m ∈ N, andt ∈ C and

1 5 k 5 m− 1. Suppose that

ϕ (pm,k (X, Y )) = 0

for all X,Y = O. Thenϕ should be a positive scalar multiple of the trace.

Remark that the non-negativity ofTr (pm,k (X, Y )) for all positive matricesX, Y is (equiva-

lent to) the Bessis-Moussa-Villani conjecture (see [9, 7] and also [6]); it is known that it is the

case if one of the following is satisfied:
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TRACIAL PROPERTY VIA INEQUALITIES 7

(1) k 5 2 (or m 5 5),

(2) n = 2 (see Fact 5 in [8]),

(3) n = 3, k = 6 (see [7]).

Proof. Due to the same argument forϕ = Tr(·D) as in the proof of Theorem 2.2, it suffices to

consider the casen = 2 so that we suppose

D = diag(ε, 1)

for a numberε (0 < ε 5 1). We show thatε = 1.

At first consider the casek = 2; let

U =
1√
2

(
1 1
1 −1

)
, A =

(
α2 α

√
1− α2

α
√

1− α2 1− α2

)
,

B =

(
1 0
0 α

)
for a numberα (0 < α < 1). SinceA2 = A, pm,k(A, B) is described as

ABk + BkA + the terms includingBAB + the termsABkA.

Notice that for a numberλ, A

(
1 0
0 λ

)
A is

(
α4 + α2(1− α2)λ α3

√
1− α2 + α(1− α2)

√
1− α2λ

α3
√

1− α2 + α(1− α2)
√

1− α2λ α2(1− α2) + (1− α2)2λ

)
,

(
1 0
0 λ

)
A

(
1 0
0 λ

)
=

(
α2 αλ

√
1− α2

αλ
√

1− α2 λ2(1− α2)

)
,

and

ABk =

(
α2 αk+1

√
1− α2

α
√

1− α2 αk(1− α2)

)
.

Thus, we have forl = 2

ABlA = o(α) (α → 0), BAB = o(α) (α → 0),

whereo is Landau’s smallo, and

0 5 ϕ(pm,k(UAU∗, UBU∗))

= ϕ(Upm,k(A, B)U∗)

= ϕ
(
U{ABk + BkA + o(α)}U∗)

= αϕ

(
U

{
1

α
(ABk + BkA) + o(1)

}
U∗
)

(α → 0).
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8 T. SANO AND T. YATSU

Dividing this inequality byα > 0 and takingα asα → 0, we have

0 5 ϕ

(
U

(
0 1
1 0

)
U∗
)

= ϕ

((
1 0
0 −1

))
= Tr

((
1 0
0 −1

)(
ε 0
0 1

))
= ε− 1,

since
1

α
ABk →

(
0 0
1 0

)
(α → 0).

Hence,ε = 1 or ε = 1.

For the casek = 1, let

C =

(
1 0
0 α2

)
(= B2).

Thenpm,1(A, C) is AC + CA + the termsACA. Notice thatACA = AB2A = o(α) (α → 0)

and the preceding argument fork = 2 works similarly. Therefore, the proof is completed.�

Remark 3.2. It follows from the proof that the inequality assumption for0 5 X,Y 5 1 is

sufficient for the assertion.

Theorem 3.3. Let ϕ be a faithful positive linear functional onMn(C) and letf be a twice

continuously differentiable convex function on[0,∞) with

f [2](0, 0, 0) = 0, f [2](1, 0, 0) > 0,

wheref [2] is the second divided difference off . Then

(3.1) ϕ

(
f (X) + f (Y )

2

)
= ϕ

(
f

(
X + Y

2

))
holds for allX, Y = 0 if and only ifϕ is a positive scalar multiple of the trace.

Also,f(t) = tp (p > 2) on [0,∞) is such an example.

Before giving a proof, let us recall basic facts on matrix convex continuous functions: letf

be a matrix convex continuous function of ordern on an intervalI. Then by definition,

f(X) + f(Y )

2
= f

(
X + Y

2

)
holds for Hermitian matricesX, Y ∈ Mn(C) with eigenvalues inI. This yields

ϕ

(
f(X) + f(Y )

2

)
= ϕ

(
f

(
X + Y

2

))
for a positive linear functionalϕ onMn(C).

We also recall basic facts on Jensen’s inequalities: for a convex continuous functionf on I

and Hermitian matricesX, Y ∈ Mn(C) with eigenvalues inI,

(3.2) Tr

(
f(X) + f(Y )

2

)
= Tr

(
f

(
X + Y

2

))
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TRACIAL PROPERTY VIA INEQUALITIES 9

is satisfied; this inequality is well-known, for instance, see [10, Proposition 3.1]: von Neu-

mann observes the convexityx 7→ Tr(f(x)). E. H. Lieb gives a description ofTr(f(x)) and

B. Simon has further arguments. F. Hansen and G.K. Pedersen study generalizations; Jensen’s

operator inequality and Jensen’s trace inequality. There are also many articles on these kinds of

inequalities. See the introduction and references in [5] about Jensen’s inequalities.

Proof. We have a proof of Jensen’s inequality (3.2) for the reader’s convenience: Ky Fan’s

maximum principle (for instance, see [2, page 35]) means that
k∑

i=1

λi(X) +
k∑

i=1

λi(Y ) =
k∑

i=1

λi(X + Y )

for k = 1, 2, . . . , n− 1, and
n∑

i=1

λi(X) +
n∑

i=1

λi(Y ) =
n∑

i=1

λi(X + Y ),

whereλi is the i-th eigenvalue withλ1 = λ2 = · · · = λn. In other words,
{
λi

(
X+Y

2

)}
is

majorized by
{

λi(X)+λi(Y )
2

}
. Then the majorization theory ([2, page 40]) says that

n∑
i=1

f

(
λi(X) + λi(Y )

2

)
=

n∑
i=1

f

(
λi

(
X + Y

2

))
.

Hence, from the convexity off in the left-hand side, the above inequality (3.2) forTr andf

follows. Therefore, ifϕ is a positive scalar multiple of the trace, we have the inequality (3.1).

We show the converse: at first we have explicit calculations for the casef(t) = tm (m ∈
N, m = 3) although we have a general treatment below: by assumption,

ϕ

(
Xm + (X + tY )m

2
−
(

X + (X + tY )

2

)m)
= 0

for t > 0 andX,Y = 0. Since

Xm + (X + tY )m

2
−
(

X +
1

2
tY

)m

=
1

4
pm,2(X, Y )t2 + o(t2) (t → 0),

0 5 t2{ϕ(pm,2(X, Y )) + o(1)} (t → 0).

Thus, dividing this inequality byt2 > 0 and takingt ast → 0, we have

ϕ(pm,2(X,Y )) = 0.

Hence, in this case the assertion follows from Proposition 3.1.

Let us consider the general case: since

ϕ

(
f(X) + f(X + tY )

2
− f

(
X + (X + tY )

2

))
= 0

for t > 0 andX,Y = 0, the preceding argument yields similarly

ϕ

(
d2

dt2

∣∣∣∣
t=0

f(X + tY )

)
= 0.
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10 T. SANO AND T. YATSU

For the same matricesA, B, U as in the proof of Proposition 3.1,

1

2

d2

dt2

∣∣∣∣
t=0

f(A + tB)

is of the form

f [2](1, 1, 1)ABABA + f [2](1, 1, 0)ABAB(1− A)

+ f [2](1, 0, 1)AB(1− A)BA + f [2](0, 1, 1)(1− A)BABA

+ f [2](1, 0, 0)AB(1− A)B(1− A) + f [2](0, 0, 1)(1− A)B(1− A)BA

+ f [2](0, 1, 0)(1− A)BAB(1− A) + f [2](0, 0, 0)(1− A)B(1− A)B(1− A)

(see the formula of the second divided difference in [2, page 129] and remark thatf [2] is sym-

metric andA is an orthogonal projection:A = 1 · A + 0 · (1 − A)). The order estimation for

BAB,AB2A and the assumptionf [2](0, 0, 0) = 0 mean

ϕ(f [2](1, 0, 0)(AB2 + B2A) + o(α)) = 0 (α → 0).

Hence, replacingA, B with UAU∗, UBU∗, we get

ϕ(U{f [2](1, 0, 0)(AB2 + B2A) + o(α)}U∗) = 0 (α → 0).

Therefore, as in the proof of Proposition 3.1, the proof is completed. �

In the proof of Theorem 3.3, a criterion of non matrix convexity of order2 is obtained:

Corollary 3.4. Letf be a function as in Theorem 3.3. Thenf is not matrix convex of order2.

The same argument works for the following theorem whose proof is left to the reader:

Theorem 3.5. Let ϕ be a faithful positive linear functional onMn(C) and letf be a continu-

ously differentiable increasing function on[0,∞) with

f [1](0, 0) = 0, f [1](1, 0) > 0,

wheref [1] is the first divided difference off . Then

ϕ(f(X)) 5 ϕ(f(Y )) whenever O 5 X 5 Y

if and only ifϕ is a positive scalar multiple of the trace.

f(t) = tp (p > 1) on [0,∞) is such an example.

We remark that a proof can be obtained by the formula of the first divided difference in [1, p.

12] for
d

dt

∣∣∣∣
t=0

f(A + tB)

as in the proof of Theorem 3.3.
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