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ABSTRACT. In this article, we give characterizations of a tracial property for a positive linear
functional via inequalities; we have necessary and sufficient conditions for a faithful positive
linear functionaky to be a positive scalar multiple of the trace by inequalities: for a non matrix
monotone, increasing functiof

XY = o(f(X) =e(f(Y))

is considered. Also for a non matrix convex, convex functfon

P (5)) = ()

is studied. We also show that suppose

0 § 2 (pm,k (Xv Y))

for all X,Y = O, theny should be a positive scalar multiple of the trace. Hergy (X,Y) is
the coefficient ot* in the polynomial X +tY)™ and1 < k < m — 1.

Key words and phrasesTrace; Inequality; Non matrix monotone function of order 2; Non matrix convex function of @rder
Bessis-Moussa-Villani conjecture.
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1. INTRODUCTION

In operator theory, matrix monotone functions and matrix convex ones have played a signif-
icant role, for instance, see! [3,/4,1, 2]. A real-valued continuous fungtion an intervall
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2 T. SANO AND T. YATSU

(€ R) is called matrix monotone of orderif X < Y implies f(X) < f(Y) forall n x n
Hermitian matricesX andY” with eigenvalues if. If f is matrix monotone of all orderd, is
said to be matrix monotone or operator monotone. Whenmatrix monotone of ordet, for
a positive linear functionab onn x n matrices, we have

X =Y =p(f(X)) = o(f(Y))

for n xn Hermitian matricesy andY. Also, for an increasing functiofiand Hermitian matrices
X andY with X £ Y,

Te(f(X)) = Tr(f(Y))
holds in whichTr is the standard trace on matrices (for more details, see the argument at the
beginning of Sectiop|2).
A real-valued continuous functiofion an intervall (< R) is called matrix convex of order
n if the inequality

; (X + Y) _ )+ 1Y)

2 - 2
is satisfied for alln x n Hermitian matricesX andY with eigenvalues in/. If f is matrix
convex of all ordersf is said to be matrix convex or operator convex. Wiigs matrix convex
of ordern, for a positive linear functionap onn x n matrices,

P (557)) = ()

holds forn x n Hermitian matricesX andY” with eigenvalues if. And for a convex function
f and Hermitian matriceX andY, we have

() 525

(see basic facts on Jensen’s inequalities explained before the proof of Theorem 3.3).

In this article, we give characterizations of tracial properties for positive linear functionals via
inequalities; we have necessary and sufficient conditions for a faithful positive linear functional
© to be tracial by inequalities: for a non matrix monotone, increasing fungtion

XY = o(f(X)) = e(f(Y))
is considered. Also for a non matrix convex, convex functfon

P (557)) = ()

is studied. We have a criterion of non matrix monotonicity of orzler non matrix convexity
of order2. We show a necessary and sufficient condition for the function

X = {Tr(|X PO }»

(p > 2) to be a norm; the function is essentially the Schatterm.
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TRACIAL PROPERTY VIA INEQUALITIES 3

We also observe an inequality given by a coefficient of a certain polynomial,,|etX,Y’)
be the coefficient of* in the polynomial( X + tY)™ for X, Y € M, (C), m € N, andt € C
andl < k£ < m — 1. Suppose that

0 § ¥ (pm,k (X? Y))

forall X, Y = O. Theny should be a positive scalar multiple of the trace (see the remark of
Propositiorj 3.1 about the BMV conjecture).

We remark that divided differences are useful in this article: we refer the readerto [4, 2, 6].

We would like to express our sincere gratitude to Professor Tsuyoshi Ando for reading the
previous manuscripts and for fruitful comments. We would like to thank the members of
Tohoku-Seminar for valuable advice, especially Professor Sin-ei Takahashi for useful com-
ments on Propositidn 3.1 and Professor Fumio Hiai for pointing out the BMV conjecture to us.
We are also grateful to the editor and the referee for careful reading of the manuscripts and for
helpful comments.

2. INEQUALITIES OF NON MATRIX M ONOTONE FUNCTIONS

Let M,,(C) be the set of all complex-square matrices and letbe a faithful positive linear
functional on,,(C). Let f be an increasing function oh= (a,b). For Hermitian matrices
X,)Y e M,(C)withal < X £Y < bl,

Ai(X) = Ai(Y)

for: = 1,2,...,n in which ); is thei-th eigenvalue with\; = \, = .- = )\,. Sincef is
increasing,

Hence, it follows that

A

Te(f(X)) = > A(f(X))

=1
Let us study the following inequality for a strictly increasing, differentiable functioon
I = (a,b) ande € [0,1] :

> oMY) = TH(F(Y)).

f'(N)a?(14¢) = 2aV1 — a? %ﬁ(% —e)+ () (1—a®) (14¢e) 20
forall u, A € I (1 < \) and alla € [0, 1]. By considering) < a < 1, we have the equivalent
inequality

! , 1—a? , 1—¢ A) —
T W T 22 s PR
forall u, A € I (u< A)andalla € (0,1). Let
p= (5::—1_5.
V1—a? 1+¢
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Then notice that
0<a<l&el<t<oo, 05eS105621,

ands = 1 ifand only if 5 = 0. The corresponding inequality is described as

1 / 1 / > f()‘) B f(:u)

(o r0) 20 1S
forall0 <t < ooandallu, A € I (1 < A). Hence, by considering arithmetic-geometric mean
inequality in the left-hand side, we have

) —
VI 2 8 HA=I,
In this case, the condition= 1 or § = 0 is given by

g VW)

SO IOV 1)

A—p

We summarize our observation as follows:

Proposition 2.1. Let f be a strictly increasing, continuously differentiable function lor=
(a,b) ande € [0, 1]. Suppose that

VIOV _

nf o Tw
A—p
Then the inequality
FN)a*(1+¢e) —2aV1 —a? WQ —e)+ (W1 —a®)(1+e)20

holds for allyu, A € I (1 < A) and alla € [0, 1] if and only ife = 1.
The following are examples

2P(p > 1) on(0,a), 2P(p > 1) on (a,00),

e® on (a,o0), e” on (—oo,a)
for a constant.

By direct computations, it is easy to see that each example satisfies the condition so details
are left to the reader.

Theorem 2.2. Let ¢ be a faithful positive linear functional of/,,(C) and let f be a function
as in Proposition 2]1. Then

(2.1) o(f(X) S p(f(Y)) wheneveral < X =Y <bl

if and only ify is a positive scalar multiple of the trace.
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Proof. At the beginning of this section it was explained thapifs a positive scalar multiple
of the trace then the inequality (2.1) holds. We show the converse: since there is uniquely a
positive definite matrixD such thatp(X) = Tr(X D) for X € M, (C), we have to prove that
D is a positive scalar multiple of the identity matrix. Taking into consideration
e (V- V)=Tr(-VDV™)

for all unitary V' and thatl” DV* is diagonal for a unitary’, we assume thab is a diagonal
matrix diag(ds, ..., d,). To show thatd; = d; for any pair ofd;,d; (i # j), we consider
matricesX = (xy,) with xy, zero except fofk, 1) = (i,1), (4,7), (4,4), (4, 7). Hence, it suffices
to consider the case = 2 so that we suppose

D = diag(e, 1)

for anumber (0 < e < 1). We show that = 1.
Let

U_L(l 1) y _()\ 0) o o avl—o?
VoL =) o ) Tt \ayitar 1-a?

for \, u(A # p,a < A\, p<b),a (0 < 1). Forallt > 0,
UA, U* S U(Ay, + tP)U",
andal < Ay, + tP, < bl for smallt > 0. Then, by assumption
Te(U f(Ax,.)U*D) < Te(U f(Ar,, + tP)U"D).
This implies that

d
~Te(Uf(Ar, +tP)U*D)|  =0.
dt ’ o

Also, the standard fact, se€ [2, page 124] for instance, yields

d f/()\) f(/\))\:f(ﬂ)
— f(AA, =+ tPa) = ( B ’ o P,
dtl,_o " LT ()

B f'(N)a? %f:(“)a\/l —a?
dWoyT=a®  fmi-a®) )

whereo stands for the Hadamard (i.e., entry-wise) product. Hence, it follows that

d
0= ZTr(f (A, + tP)UDU)

=Tr i
dt|,_,

o f’()\)O&Q f()\/i:lji(ﬂ)am 1 14e _(1 B 8)
- f()ﬁ:l]i(u)am f’(u)(l . &2) ’ § (—(1 — 8) 1+e¢ )

{roea+o - 2avi=a =L 0 o4 o - e+

t=0

J(Ax, + tPa> -U*DU)

1
2
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for all o, A, . Therefore, thanks to Propositipn .1, the proof is completed. O

In the proof of Theorerh 22, a criterion of non matrix monotonicity of olierobtained:

Corollary 2.3. Let f be a function as in Propositign 2.1. Théhis not matrix monotone of
order2.

As a corollary of Theorern 2.2, we have

Theorem 2.4.LetC € M, (C) be a positive definite matrix and lgt> 2 be given. Then the
function

p(X) == Te(IXPPC)r (X € My(C))
is a norm if and only it”' is a positive scalar multiple of the identity matrix.

Proof. Suppose that is a norm. Then, by definition
pUX) = p(X)

for all unitary U. For positive semidefinite matrices, Y with X < Y/, there is a contraction
V such thatYz = VY andV is a convex combination of unitary matricés:= Zf;l Ui,
where)\; 2 0,U; isunitary(j = 1,2,...,N) ande;1 A; = 1. Hence, we have

7 (X%> = ((é AZUZ) Y%> < g:Am (Uiyé> . (yg)

sincey is a norm. Therefore, the faithful positive linear functional/dp(C) defined by

o(+) :=Tr(- C)
satisfies
OSX sy —p(xt)sp(vh),
Since? > 1, it follows from Theorenj 22 that' is a scalar multiple of the identity matrix; the
proof is completed. H

3. INEQUALITIES OF NON MATRIX CONVEX FUNCTIONS

Let us start this section with the following observation of tracial properties:

Proposition 3.1. Let ¢ be a faithful positive linear functional on/,,(C). Let p,,, x(X,Y") be
the coefficient of* in the polynomial X + tY)™ for X, Y € M, (C), m € N, andt € C and
1 £k < m — 1. Suppose that

© (Pmi (X,Y)) 20
forall X, Y = O. Theny should be a positive scalar multiple of the trace.

Remark that the non-negativity @t (p,, x (X, Y")) for all positive matricesy, Y is (equiva-
lent to) the Bessis-Moussa-Villani conjecture (s€e [9, 7] and also [6]); it is known that it is the
case if one of the following is satisfied:
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(1) k <2 (orm < 5),
(2) n = 2 (see Fact 5in [8]),
(3) n =3, k =6 (seelT)).

Proof. Due to the same argument for= Tr(-D) as in the proof of Theorefn 2.2, it suffices to
consider the case = 2 so that we suppose

D = diag(e, 1)

for a number (0 < ¢ < 1). We show that = 1.
At first consider the case = 2; let

U—i 1 1 = a? a1 — a2
2\l -1 S \lavl—-a2 1-a% )’

10
o= 0)
for anumbern (0 < a < 1). SinceA? = A, p,, (A, B) is described as

AB* + B¥A + the terms including3AB + the termsAB* A.

Notice that for a numbek, A <(1) 9\) Als

at +a?(1—a?)\ a3Vl —a? +a(l —a?)V1 — a2\
a1 —a? +a(l —a?)V1 — a2\ a?(1—a?) + (1 —a?)?X ’

(G-,

ARk o? aF /1 — a2
- \avi—a? af(1 —a?) '

and

Thus, we have fotr = 2
AB'A = o(a) (a — 0), BAB = o(a) (a — 0),
whereo is Landau’s smalb, and
0= e(pmi(UAUT, UBUY))
P(Upmi(A, B)U")
¢ (U{AB" + B"A + o(a)}U*)

— ap (U {é(AB’“ + BEA) + 0(1)} U*) (@ — 0).
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Dividing this inequality bya > 0 and takingn asa — 0, we have
0 1
< *
2o (v 0)7)
B 1 0
— 2\ -1
B 1 0 e 0\) _ _q
o -1)\o 1))

1
—AB* — ((1) 8) (v — 0).

since

Hencegs = 1ore = 1.
For the casé =1, let

1 0
Thenp,, 1(A, C) is AC + C A + the termsAC A. Notice thatACA = AB?*A = o(a) (a — 0)

and the preceding argument fo= 2 works similarly. Therefore, the proof is completed ]

Remark 3.2. It follows from the proof that the inequality assumption for< XY < 1is
sufficient for the assertion.

Theorem 3.3. Let ¢ be a faithful positive linear functional oiZ,,(C) and let f be a twice
continuously differentiable convex function [enoco) with
f#(0,0,00=0, f¥(1,0,0) >0,

where 12 is the second divided difference ff Then

() ()

holds for all X, Y = 0 if and only if is a positive scalar multiple of the trace.
Also, f(t) = t? (p > 2) on |0, c0) is such an example.

Before giving a proof, let us recall basic facts on matrix convex continuous functions: let
be a matrix convex continuous function of ordeon an intervall. Then by definition,

10 I0) 5 <X+Y>

2
holds for Hermitian matriceX’, Y € M, (C) with eigenvalues if. This yields

() 2o ((557))

for a positive linear functionap on M,,(C).
We also recall basic facts on Jensen’s inequalities: for a convex continuous fuficioh
and Hermitian matriceX,Y € M,,(C) with eigenvalues if,

()
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is satisfied; this inequality is well-known, for instance, see [10, Proposition 3.1]: von Neu-
mann observes the convexity— Tr(f(x)). E. H. Lieb gives a description ¢fr(f(z)) and

B. Simon has further arguments. F. Hansen and G.K. Pedersen study generalizations; Jensen’s
operator inequality and Jensen’s trace inequality. There are also many articles on these kinds of
inequalities. See the introduction and referenceslin [5] about Jensen’s inequalities.

Proof. We have a proof of Jensen’s inequalify (3.2) for the reader’s convenience: Ky Fan’s
maximum principle (for instance, se€ [2, page 35]) means that

D NX) D M) =D NN +Y)

fork=1,2,...,n—1,and

n

fjwo + anm/) =) MX +Y),

where)\; is thei-th eigenvalue with\; = X, = --- = X,. In other words,{); (¥3¥)} is
majorized by {W} Then the majorization theory {[2, page 40]) says that

= N(X) + N (Y) = X+Y
> i :
Z f ( : > Z f :
Hence, from the convexity of in the left-hand side, the above inequality {3.2) farand f
follows. Therefore, ifp is a positive scalar multiple of the trace, we have the inequélity (3.1).
We show the converse: at first we have explicit calculations for the fd@$e= t™ (m €
N, m = 3) although we have a general treatment below: by assumption,

; (Xm+();'+tY)m _ (XJF();”Y))WL) >0

fort > 0andX,Y = 0. Since

Xm+(X+tY)m_(
2

1 |
X + 5 tY) =1 Pm2(X,Y)E* + o(t?) (t — 0),

0= {p(pma(X,Y)) +o(1)}  (t—0).
Thus, dividing this inequality by? > 0 and takingt ast — 0, we have
Sp(pm,2(Xa Y)) 2 0.

Hence, in this case the assertion follows from Proposijtion 3.1.
Let us consider the general case: since

(p(f(X)+f(X+tY) _f<X+(X+tY)>) 0

v

2 2
fort > 0andX,Y = 0, the preceding argument yields similarly

d2
80(@
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For the same matrice$, B, U as in the proof of Propositidn 3.1,

1 d?

4 fA+tB)
2dt?),_,

is of the form

fB(1,1,1)ABABA + f(1,1,0)ABAB(1 — A)

+ f#(1,0,1)AB(1 — A)BA + f#(0,1,1)(1 — A)BABA

+ f2(1,0,0)AB(1 — A)B(1 — A) + f2(0,0,1)(1 — A)B(1 — A)BA

+ f2(0,1,0)(1 — A)BAB(1 — A) + f2(0,0,0)(1 — A)B(1 — A)B(1 — A)

(see the formula of the second divided difference in [2, page 129] and remark3hatsym-
metric andA is an orthogonal projectiond = 1- A+ 0- (1 — A)). The order estimation for
BAB, AB?A and the assumptiofi?/(0,0,0) = 0 mean

e(f(1,0,0)(AB* + B*A) + o(a)) 20 (a — 0).
Hence, replacingl, B with UAU*, U BU*, we get
e(U{f(1,0,0)(AB? + B*A) + 0(a)}U*) 20 (o — 0).
Therefore, as in the proof of Proposition|3.1, the proof is completed. 0J

In the proof of Theorerp 3|3, a criterion of non matrix convexity of or2lex obtained:
Corollary 3.4. Let f be a function as in Theoregm 8.3. Théis not matrix convex of order.
The same argument works for the following theorem whose proof is left to the reader:

Theorem 3.5. Let ¢ be a faithful positive linear functional oi/,,(C) and let f be a continu-
ously differentiable increasing function ¢ co) with

0,0y =0, f1(1,0) >0,
where f[!l is the first divided difference gf. Then

p(f(X)) = @(f(Y)) wheneverO = X =Y

if and only ify is a positive scalar multiple of the trace.
f(t)=1t" (p>1)on|0,00) is such an example.
We remark that a proof can be obtained by the formula of the first divided difference in [1, p.
12] for
d
—|  f(A+tB)

t=0

as in the proof of Theorem 3.3.
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