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In this paper, some retarded nonlinear integral inequalities in two variables with
more than one distinct nonlinear term are established. Our results are also applied
to show the boundedness of the solutions of certain partial differential equations.
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1. Introduction

The Gronwall-Bellman integral inequality plays an important role in the qualitative
analysis of the solutions of differential and integral equations. During the past few
years, many retarded inequalities have been discovered (skjd][5, 6, 10, 11]).
Lipovan [4] investigated the following retarded inequality

b(t)

(1.1) u(t) <a+ (s)w(u(s))ds, to <t <t
b(to)
and Agarwal et al.§] generalized {.1) to a more general case as follows
n bl(t)
@2 w<a®+d [ Auluo)ds  w<t<h
i=1 7 bi(to)

Recently, many people such as Waag][ Cheung ] and Dragomir §] established
some new integral inequalities involving functions of two independent variables and
Zhao et al. 11] also established advanced integral inequalities.

The purpose of this paper, motivated by the works of Agaréjalfheung p] and
Zhao [L1], is to discuss more general integral inequalities withonlinear terms

n a;(z)  poo

A3 ey <den+) [ Fie,y. 5, Dy (u(s, 1)) dtds
i=1 Oéi(o) ﬁz(y)
and

o
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2. Statement of Main Results

LetR = (—o0, 00) andR ;. = [0, 00). Dy z(z,y) andD,z(z, y) denote the first-order
partial derivatives of (z, y) with respect tar andy respectively.

As in [6], definew; o w; for wy,we : A C R — R\{0} if 2 is nondecreasing
w1

on A. Assume that

(B1) w;(u) (i = 1,...,n)is a nonnegative, nondecreasing and continuous function
for v € R, with w;(u) > 0 for u > 0 such thatv; oc wy o « - - o wy,;

(B2) a(z,y) is a nonnegative and continuous functionfoy € R ;

(Bs) fi(z,y,s,t) (i =1,...,n)isacontinuous and nonnegative functionfoy, s, t €
R,.
Take the notatiohV;(u) := f;‘_ wf(zz) for u > u;, whereu; > 0 is a given constant.
Clearly,W; is strictly increasing, so its invers&, ! is well defined, continuous and
increasing in its corresponding domain.

Theorem 2.1. Under the assumption&5; ), (B2) and (Bj;), supposei(z,y) and
fi(z,y, s, t) are bounded iy € R,. Leto;(z), 5;(y) be nonnegative, continuously
differentiable and nondecreasing functions witliz) < x andg;(y) > y onRR, for
i=1,2,...,n. Ifu(z,y) is a continuous and nonnegative function satisfying)(
then

an(x) 00

fn(w7 Y, s, t)dtds
an(0) Bn(y)

(2.1) u(z,y) < W1 [Wn(bn(x,y)) —l—/
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forall 0 <z < zy,y1 <y < oo, whereb,(z,y) is determined recursively by

bi(z,y) = sup sup a(T,p),

0<7<z y<p<oo

ai(z) poo
a;(0)  JBi(y)
fi(x7y787t> = sup sup fi(T7M7 S7t)7

0<7<z y<pu<oo

(22) bi-i-l(x’y) = VVz‘_l [Wl(bl('ray)) +/ fi(xvy’sut)dtd‘g] ’

W1(0) :== 0, andzy,y; € R, are chosen such that

* dz

i U)Z(Z)

o (z1) 00 B
a;(0) i (1) u

fori=1,...,n.

The proof of Theorem2.1 will be given in the next section.

Remarkl. As in [6], different choices of; in W; do not affect our results. If all
w; (i =1,...,n)satisfy [ -2 = oo, then ¢.1) is true for allz,y € R,.

wi(z)

Remark2. As in [10], if w;(u) (¢ = 1,...,n) are continuous functions dR, and
positive on(0, oo) but the sequence dfw;(u)} does not satisfyv; oc wy o -+
wy,, We can use a technique of monotonization of the sequence of functj¢ns
calculated by

wy(u) == arélﬁf] wy(0),
~ o wi+1(0) = L _
(2.4) Wiyr(u) == 921[8‘,’5] {—”J)Z(Q) } w;(u), i=1,...,n—1.
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Clearly,w;(u) > w;(u) (i = 1,...,n). (1.39) and (L.4) can also become

n a;(z)  poo

(2.5) u(z,y) < alz,y) + Z/

i=1 i(0) Bi (y)

filz,y, s, )W (u(s, t))dtds

and

(2.6)  u(z,y) <a(z,y) +Z/ filw,y, s, t)w;(u(s, t))dtds,
i=1 Joui(z) J Bi(y)

where the function sequenée;(u)} satisfies the assumptid@i; ).

Theorem 2.2. Under the assumption&5; ), (B2) and (Bs;), suppose(z,y) and
fi(z,y,s,t) are bounded inc,y € R,. Letw;(z), 5;(y) be nonnegative, continu-
ously differentiable and nondecreasing functions wittw) > = and g;(y) > y on

R, fori =1,2,... n. Ifu(z,y) is a continuous and nonnegative function satisfying

(1.4), then

(2.7) u(z,y) < W, {Wn(bn(%y)) +/ fn(%y,s,t)dtdé‘l
an(z) J Bn(y)

forall z; <z < oo, 71 <y < oo, Whereb,(z,y) is determined recursively by

bi(z,y) = sup sup a(7, ),

r<T<00 y<pu<oo
bl ) = W [Wilbe) + |
a;i(z) J Bi(y)
(28) fi(x7y787t) = Sup sup fi(Ta,uasat)?

r<T<00 y<pu<oo

o0 [e.e]

ﬁ(:z:,y,s,t)dtds} ,
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W1(0) :== 0, andiy,g; € R, are chosen such that

o0 [ee] . o0 d
2.9)  Wilbi(ind0) + / / Fi(sy, s, t)dtds < / :
ai(fl) 7,(1:/1) u

. wiz)
fori=1,...,n.
The proof is similar to the argument in the proof of Theorgdmwith suitable Retarded Nonlinear Integral
modifications. In the next section, we omit its proof. Inequalities
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3. Proof of Theorem?2.1

From the assumptions, we know that(z,y) and f;(x,y, s, t) are well defined.

Moreover,a(x,y) and ﬁ(x,y,s,t) are nonnegative, nondecreasingzirand non-
increasing iny and satisfyb, (z,y) > a(x,y) and fi(z,y,s,t) > fi(x,y,s,t) for
eachi =1,...,n

We first discuss the cas€z,y) > 0 forall x,y € R,. From(1.3), we have

(3.1) u(z,y) < bi(x,y —{—Z/ fZ z,y, s, )w;(u(s, t))dtds.

Bi(y)
Choose arbitrary,, ; such that) < &; < zq,11 < 7; < oo. From(3.1), we obtain

(3.2) u(z,y) < b1(Z1, 7 +Z/ fz (Z1, 91, s, t)w;(u(s, t))dtds

forall0 <z <2 <21,y §y1§y<00-
We claim that

an(z) poo

(33) U(l’,y) S Wn_l [Wn(gn(:il7glvx7y)) +/
an(0) v Bn(y)

forall 0 <z < min{Z,x2}, max{g;,y2} <y < oo, where

fn(i‘h Y1, S, t)dtds]

51(51@1, z,y) = bi(Z1, ),
(3.4) Bi-{-l(‘%h Y1, T, ?J)

=W [Wi(gz‘@hﬂl,%y)) "‘/

a;(0) JBi(y)

a;(z)  poo

fz‘(fl, Y1, S, t)dtds]
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fori=1,...,n—1andx,,y, € R, are chosen such that

a;(z2)

_ R B o0 ~ R o0 dz
(3.5) Wi<bi(xlay17$27y2))+/ / fi($17y1737t)dtd3§/
a;(0) i (y2) u ’LUZ(Z)

i

fori=1,...,n.

Note that we may take, = x; andy, = y;. In fact, Bi(il,gl,x,y) and
ﬁ-(fl, U1, ,y) are nondecreasing ity and nonincreasing ig; for fixed z,y. Fur-
thermore, it is easy to check tﬁg(il,gl, T1,71) = bi(z1, 1) fori=1,...,n. If 2
andy, are replaced by; andy; on the left side of §.5) respectively, fromZ%.3) we
have

- ai(z1) poo
Wi(bi(Z1,91, 21, y1)) —l—/ / fi(Z1, 71, s, t)dtds
a;(0) i (y1)
B a;(r1) 0o B
< Wz‘(bi(l’hyhxlayl)) +/ / fi(xhylvsat)dtds
a;(0) i (y1)
a;(r1) poo
~Wiltitorg) + [ [ s ods
a;(0) i (y1)

</°° dz

Thus, we can take; = x1,y2 = 1.
In the following, we will use mathematical induction to proved).
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Thenz(z,y) is differentiable, nonnegative, nondecreasingdfar [0, ;] and nonin-
creasing fory € [g1, 00] andz(0,y) = z(z,00) = by (Z1,71). From(3.2), we have

(3.6) u(z,y) < z(z,y).

Consideringy, (z) < = anda/, (z) > 0 for 2 € R, we have

o0

Dyz(x,y) = . )fl(il,Ql,oq(x%t)wl(U(Oél(x)J))dta'l(fC)

o0

< Fi(@1, 3, on (2), t)w (2(on (2), 1))ty (z)
B1(y)

[e.o]

3.7) < wi(z(z,y)) " )fl(fl,’tju an (), t)dta; (x).

Sincew, is nondecreasing andz, y) > 0, we get

—Dl(z($,y)) T g 1, U1, oq(x o (x
(38) wl(z(x,y)) < () fl( 15 Y1, 1( )7t)dt 1( )

Integrating both sides of the above inequality frono x, we obtain

o0

Wi(z(z,y)) §W1(Z(0,y))+/0x B()fl(fl,3?17041(8)7t)041(8)dtd8

ai(z)  poo

(39) :Wl(bl(jlvgl))+/ fl(j1’g178at)dtd8'
a1(0) B1(y)
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Thus the monotonicity ofi;! and (.5) imply

u(z,y) < z(z,y)

a1 ()
<wi! [W1(b1(f17??1)) +/
a1(0)

A (Z1, 71, s, t)dtds] ,

B1(y)
namely 63) iS true forn =1. Retarded Nonlinear Integral
Assume that.3) is true forn = m. Consider neauaiies
Kelong Zheng
m—+1 a;i(x) S vol. 9, iss. 2, art. 57, 2008
u(x,y) < bi(ZT1,91) + Z/ fi(Z1, 91, 8, t)w;(u(s, t))dtds
i=1 a;(0) Bi(y)
Title Page
forall0 <z <z,7 <y < oo. Let
Contents
m+1l q;(x) oo
z(xz,y) = b1(Z1,71) + Z/ fi(Z1, 71, s, t)w;(u(s, t))dtds. <« >
i=1 a;(0) Bi(y) < S

Thenz(z,y) is differentiable, nonnegative, nondecreasingdfar [0, ;] and nonin-
creasing fory € [g;, 00]. Obviously,z(0,y) = 2(z,0) = by (%1, 9:1) andu(z,y) <
z(z,y). Sincew, is nondecreasing andx,y) > 0, noting thata;(z) < z and Go Back
o(z) > 0forz € R, we have

Page 11 of 22

Full Screen
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< fl(f17§1,a1($)at)dta;(x)
B1(y)

m+1 0o

+ Z i@, 5, i), )iz (i (), 1))ty (x)

Bi(y)
o0 ~ !
< fl('i‘b gl: aq (ZE), t)dtal(l‘) Retarded Nonlinear Integral
B1(y) Inequalities
’ Kelong Zheng
+Z/ﬁ fz+1 (Z1, 91, i (2 )at)¢i+1(2(04i+1(95)at))dmm(x)’ vol. 9, iss. 2, art. 57, 2008
z+1
whereg; 1 (u) = ﬁi)), i=1,. m. Integrating the above inequality frotnto Title Page
x, we obtain
Contents
Wi(z(z,y)) o « >
<Wi@a)+ [ [ Rl ans)a) s g
0 JpBi(y)
, Page 12 of 22
+Z/ / fir1 (@1, 91, Qi1 (8), )i (2(iga (8), 1)) (s)dtds
Bis1(y Go Back
< Wi(b1(21, 1)) +/ fi(@1, 91, 5, t)dtds Full Screen
a1(0) JB1(y) Close

ajt1(z)
/ ot 00005, D),
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or
ai+1(x)

E(ry) < erley) + / / Fror(F1, 5, i (W (E(s, ) )dids
a;11(0)  JBir1(y)

for0 <z < 1,91 <y < oo. This is the same as3(3 for n = m, where

&(z,y) = Wi(z(z,y)) and

ci(z,y) = Wi(bi(Z1, 7)) / fl(il,gl,s,t)dtds.
B1(y)

From the assumption;), eachg; .1 (W, '(u)) (i = 1,...,m) is continuous and

nondecreasing for. Moreover,¢,(W; ') o« ¢3(W; ') oc -+ o¢ ¢ (Wi ). By
the inductive assumption, we have

(3.10) &(z,y)

< q)r_nlﬂ [q)m-i-l(cm(xuy)) +/ / fm+1($1uy173’t)dtd3]
am+1(0 Brm+1(y

forall 0 < x < min{Z, x5}, max{g;,ys} < y < oo, where

“ dz
Dip1(u) = T
R R )
u >0, 41 = Wi(ui1), ©15 is the inverse ofo, 1,i = 1,...,m,

a7,+1

Ci+1($7y) = (I);11 [(I)1+1 Cz x y /

i+1(0)

/ flﬂ(a:l,yl,s tydtds| ,i=1,...,m,
ﬁz+1
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andzs, y3 € R, are chosen such that

aiy1(xs

) foo 5
(3.11) i1 (ci(r3,y3)) +/ / fir1(21, 71, 5, t)dtds
! Bit1(ys3)

Wi(e0) dz
< / T
Ui 1 ¢i+1<Wl (Z))

i+1(0)

Retarded Nonlinear Integral

) Inequalities
fori = 1, o, M. Kelong Zheng
Note that vol. 9, iss. 2, art. 57, 2008
v dz
q)z(u) = T 17 N
a; Oi(Wy l(z)) Title Page
— /u wi (W' (2))dz Contents
Wi (us) wi(Wfl(z))
S N 1 44 44
= =W;o W , 1=2,...,m+ 1.

From (3.10), we have Page 14 of 22

_ Go Back
U(Z’,y) S Z(l’,y) = Wl 1(5(1‘,y>)

Full Screen

< WT;}H [Wm+1(W11(Cm<5U: Y))) Close
am+1(z)  foo) N o journal of inequalities
(3.12) + o b0 Jms1(Z1, 91, 5, t)dtds in pure and applied

Am+1 m+1y mathematics
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Then,

ax,y) = Wy (e, y))

= [W1 bl .'17172/1 / f1 ml,yl,s t)dtds]

i) (.731, Y1, y) Retarded Nonlinear Integral
Inequalities
Moreover, with the assumption tha}, (x, y) = by41(Z1, 71, x, y), we have Kelong Zheng
vol. 9, iss. 2, art. 57, 2008
Qn+1(x7y)
am+1 3
= I/Vl—1 [q);il(q)mﬂ(cm(x, v)) + / / fm+1($1, U1, S, t)dtds)] Title Page
i am+1(0) /Bme1(y Contents
O57714»1
n_wlﬂ Wit (W1 1 (em(7,9)) / / fm+1(1‘179173 t>dtd5’] « >
L Oém-!—l ﬁm-}—l < >
am+1(x)
= W;}rl Wini1(Gm(x,y)) +/ / fm+1(x1,y1, s, t)dtds Page 15 of 22
am+1(0) Bm41(y)
—— Go Back
= Wrr_z—li-l Wini1 (bp41(Z1, 91, 2, y)) "‘/ /ﬁ fm+1(371,91>3 t)dtds] Full Screen
L am+1 m+1
- Z;m-f—Q(i‘l; gh xZ, y) Close
This proves that journal of inequalities
) in pure and applied
éz<x7y) = bi+1(3~51,§1,9€,y), 1= 17"'>m' mathematics
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Therefore, £.11) becomes

O51-‘,—1 173

Wit (b1 (71,31, 73, y3)) / / fir1 (@1, 9, 8, t)dtds
a;y1(0 Bit1(y3)

Wi(e0) dz
o g -
Uit1 ¢i+1 ( 1 (Z)) Retarded Nonlinear Integral

) dz . Inequalities
= , t=1,...,m. Kelong Zhen:
s Wi1(2) P

vol. 9, iss. 2, art. 57, 2008

The above inequalities an@.¢) imply that we may take:; = 3, yo = y3. From

(3.12 we get
Title Page
u(z,y) < Wiy [Wmﬂ(bmﬂ(jl, U1,7,Y)) Contents
<4< »
am+1
+/ / fm+1($1 Y1, S, t)dtds] < S
am+1(0 Bm+1(y

Page 16 of 22
forall 0 <z < 71 < 29,90 < 71 < y < oo. This proves §.3) by mathematical

. . Go Back
induction.
Takingz = 71,y = 71, x2 = 1 andy, = y;, we have Full Screen
Close

. i) < WL b (F1. 1. F1.
(3 13) u(xhyl)—Wn [Wn<bn(x1ayl7xlayl)) journdl Ofinequc"ﬁes

in pure and applied

LEl :
/ / n(T1, 01,8 t)dtds] mathematics
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for0 < & < x5 < §1 < oo. lItis easy to verify thab, (71, 1, %1, 51) =
b, (Z1,71). Thus, 8.13 can be written as

an(Z1) 00 B
u(‘%hgl) S Wn_l [Wn(bn('{ihgl)) +/ / fn(‘%hglvsat)dtd‘g] .
an(0) n (91)

Sincezy, g, are arbitrary, replace, andy; by = andy respectively and we have

an(xz) poo

u(z,y) < W, [Wn(bn(%y)) +/ fulz,y, s, t)dtds
an(0) JBa(y)

forall0 <z <z, <y < oo.

In casea(z,y) = 0 for somez,y € R,. Letb, (x,y) := bi(x,y) + € for all
z,y € Ry, wheree > 0 is arbitrary, and them, .(z,y) > 0. Using the same
arguments as above, whérgz, y) is replaced with, .(z, y) > 0, we get

anp(x) poo
u(a,y) < W' [Wn(bn,e(x,y)) +/ / dn (2, y, SJ)dtdS] :
an (0) 7 (y)

Lettinge — 07, we obtain(2.1) by the continuity oft, . in ¢ and the continuity of
W; andW,;”! under the notatiof; (0) := 0. O
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4. Applications

Consider the retarded partial differential equation

1
DD = — _
1Da0(e9) = e + o (S0 exp () Il )
3 T T _
— - — _ — Retarded Nonlinear Integral
(41) + 4ZE exp ( 2) exp( 3y)7j (2 ’ 3y> ) Inequalities ’
(4.2) v(x,00) = o(x),v(0,y) = 7(y),v(0,00) = k, Kelong Zheng

. . . . . vol. 9, iss. 2, art. 57, 2008
for x,y € R, whereo, ™ € C(R,,R), o(x) is nondecreasing im, 7(y) iS nonin-

creasing iny, andk is a real constant. Integrating.() with respect tor andy and
using the initial conditions4.2), we get Title Page

- Contents
v(z,y) = o(z) +7(y) k—m « >

// exp (—s)exp (—t)\/|v(s,t)|dtds < >

Page 18 of 22
——/ / sexp( f) exp (—3t)v (f,3t)dtds e
2 2 Go Back
i
o(x)+7(y) —k— (x + 1)(y+ 1) Full Screen
/ / exp (—s) exp (—t)/|v(s, t)|dtds Sl
0
00 journal of inequalities
_/ / sexp (—s) exp (—t)v(s, t)dtds. in pure and applied
0 J3y mathematics
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(e 9l < lo(@) +7(y) = + e T

+ /Ox /yoo exp (—s) exp (—t)/[v(s, 1) dtds

+/2/ sexp (—s) exp (—t)|v(s,t)|dtds.
0 3y

) Inequalities
Lettlng u(~177 y) = |U(l’, y)|! we have Kelong Zheng

Retarded Nonlinear Integral

a1 (x) 00 vol. 9, iss. 2, art. 57, 2008
u(a:?y) < a(w,y) +/ f1(11,y,8,t)w1(u)dtds
a1(0) JBi(y)
az(z)  poo Title Page
+/ fo(z,y, s, t)we(u)dtds,
az(0)  JB2(y) Contents
where (2.9) = |o() () — K] x 4 »
alz,y) = |olx)+717(y) — Kkl + ——,
’ / @+ Dy +1) B
T
a(z) =z, Bily) =y, oaofr)= 9 Bo(y) =3y, wi(u)= Vu, wo(u) = u, Page 19 of 22
f1(l',y,8,t) = €Xp <_5) exp (—t), f2(x7y73,t) = sexp (_3) exp (_t)‘ Go Back

Full Screen

Clearly, zf% = %ﬁ = +/u is nondecreasing far > 0, that is,w; o wy. Then for
Ui, ug >0 Close

bi(z,y) = a(z,y), filz,y,s,t) = fi(z,y,s,1), fo(w,y,8,t) = fa(z,y,5,1), journal of inequalities
in pure and applied
9 mathematics
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“d
Wa(u) = “ E, Wy Hu) = ugexp(u),

usg z U9

bo(z,y) = Wit |:W1<b1($,y)) + /:D /OO filz,y, s,t)dtds}
= Wi [2(Vou(w.y) = Vi) + (1= exp (—2)) exp (—y)| _

- [ ba(z.9) + (1= exp (~2) exp <—y>] }

Kelong Zheng

vol. 9, iss. 2, art. 57, 2008
By Theorem2.1, we have
jo(, )] < W lwbz(x, D+ 1 s t>dtds] Tite Page
0 /3y Contents
3 ba(x,y) x x
_ 1 2\b, _ (2 _Z _
=W, {ln o + (1 (2 + 1) exp ( 2)) exp ( 3y)] <« >
b2 (ZL’, y) x T :| 4 ¢
= In——+(1—(=+1)exp|—=) ) exp(—3
2 P { U2 ( <2 ) P ( 2 >> P ( y) Page 20 of 22
s xXr
— ba(z,y) exp [(1 —(5+1)exp (=5)) exp (~3y) Go Back
T 1 2 Full Screen
) 70) — H e 0 - e (e exp ()
<\/| ( + 1)(y + 1) 2 Close
xXr s
X ex 1—(=+4+1)exp|{—=) )exp(—3 .
P [( (2 ) P ( 2>> P yﬂ journal of inequalities
This implies that the solution ofi(1) is bounded for:, y € R, provided that (z) + s pt::re and dpplied
7(y) — k is bounded for alk, y € R,. maihemaics
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