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1. I NTRODUCTION

Let Lp (1 < p < ∞) [C] be the class of all2π–periodic real–valued functions integrable
in the Lebesgue sense withp–th power [continuous] overQ = [−π, π] and letXp = Lp when
1 < p < ∞ or Xp = C whenp = ∞. Let us define the norm off ∈ Xp as

‖f‖
Xp = ‖f(·)‖

Xp =


(∫

Q
|f (x)|p dx

) 1
p

when 1 < p < ∞,

supx∈Q |f (x)| when p = ∞,

and consider its trigonometric Fourier series

Sf(x) =
ao(f)

2
+

∞∑
ν=0

(aν(f) cos νx + bν(f) sin νx)

with the partial sumsSkf .
Let A := (an,k) (k, n = 0, 1, 2, . . . ) be a lower triangular infinite matrix of real numbers and

let theA−transforms of(Skf) be given by

Tn,Af (x) :=

∣∣∣∣∣
n∑

k=0

an,kSkf (x)− f (x)

∣∣∣∣∣ (n = 0, 1, 2, . . . )
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2 WŁODZIMIERZ ŁENSKI

and

Hq
n,Af (x) :=

{
n∑

k=0

an,k |Skf (x)− f (x)|q
} 1

q

(q > 0, n = 0, 1, 2, . . . ) .

As a measure of approximation, by the above quantities we use the pointwise characteristic

wxf(δ)Lp :=

{
1

δ

∫ δ

0

|ϕx (t)|p dt

} 1
p

,

where
ϕx (t) := f (x + t) + f (x− t)− 2f (x) .

wxf(δ)Lp is constructed based on the definition of Lebesgue points(Lp−points), and the mod-
ulus of continuity forf in the spaceXp defined by the formula

ωf (δ)Xp := sup
0≤|h|≤δ

‖ϕ · (h)‖Xp .

We can observe that with̃p ≥ p, for f ∈ X p̃, by the Minkowski inequality

‖w · f(δ)p‖
Xp̃
≤ ωf (δ)X p̃ .

The deviationTn,Af was estimated by P. Chandra [1, 2] in the norm off ∈ C and for
monotonic sequencesan = (an,k). These results were generalized by L. Leindler [3] who
considered the sequences of bounded variation instead of monotonic ones. In this note we shall
consider the strong meansHq

n,Af and the integrable functions. We shall also give some results
on norm approximation.

By K we shall designate either an absolute constant or a constant depending on some param-
eters, not necessarily the same of each occurrence.

2. STATEMENT OF THE RESULTS

Let us consider a functionwx of modulus of continuity type on the interval[0, +∞), i.e., a
nondecreasing continuous function having the following properties:wx (0) = 0, wx (δ1 + δ2) ≤
wx (δ1) + wx (δ2) for any0 ≤ δ1 ≤ δ2 ≤ δ1 + δ2 and let

Lp (wx) = {f ∈ Lp : wxf (δ)Lp ≤ wx (δ)} .

We can now formulate our main results.
To start with, we formulate the results on pointwise approximation.

Theorem 2.1.Letan = (an,m) satisfy the following conditions:

(2.1) an,m ≥ 0,
n∑

k=0

an,k = 1

and

(2.2)
m−1∑
k=0

|an,k − an,k+1| ≤ Kan,m,

where
m = 0, 1, . . . , n and n = 0, 1, 2, . . .

(∑−1

k=0
= 0
)

.

Supposewx is such that

(2.3)

{
u

p
q

∫ π

u

(wx(t))
p

t1+ p
q

dt

} 1
p

= O (uHx (u)) as u → 0+,
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whereHx (u) ≥ 0, 1 < p ≤ q and

(2.4)
∫ t

0

Hx (u) du = O (tHx (t)) as t → 0 + .

If f ∈ Lp (wx) , then

Hq′

n,Af (x) = O (an,nHx (an,n))

with q′ ∈ (0, q] andq such that1 < q (q − 1) ≤ p ≤ q.

Theorem 2.2.Let (2.1), (2.2) and(2.3) hold. If f ∈ Lp (wx) then

Hq′

n,Af (x) = O

(
wx

(
π

n + 1

))
+ O

(
an,nHx

(
π

n + 1

))
and if, in addition,(2.4) holds then

Hq′

n,Af (x) = O

(
an,nHx

(
π

n + 1

))
with q′ ∈ (0, q] andq such that1 < q (q − 1) ≤ p ≤ q.

Theorem 2.3.Let (2.1) , (2.3) , (2.4) and

(2.5)
∞∑

k=m

|an,k − an,k+1| ≤ Kan,m,

where
m = 0, 1, . . . , n and n = 0, 1, 2, . . .

hold. If f ∈ Lp (wx) then

Hq′

n,Af (x) = O (an,0Hx (an,0))

with q′ ∈ (0, q] andq such that1 < q (q − 1) ≤ p ≤ q.

Theorem 2.4.Let us assume that(2.1), (2.3) and(2.5) hold. If f ∈ Lp (wx) , then

Hq′

n,Af (x) = O

(
wx

(
π

n + 1

))
+ O

(
an,0Hx

(
π

n + 1

))
.

If, in addition,(2.4) holds then

Hq′

n,Af (x) = O

(
an,0Hx

(
π

n + 1

))
with q′ ∈ (0, q] andq such that1 < q (q − 1) ≤ p ≤ q.

Consequently, we formulate the results on norm approximation.

Theorem 2.5.Letan = (an,m) satisfy the conditions(2.1) and(2.2). Supposeωf(·)X p̃ is such
that

(2.6)

{
u

p
q

∫ π

u

(ωf(t)X p̃)
p

t1+ p
q

dt

} 1
p

= O (uH (u)) as u → 0+

holds, with1 < p ≤ q and p̃ ≥ p, whereH (≥ 0) instead ofHx satisfies the condition(2.4).
If f ∈ X p̃ then ∥∥∥Hq′

n,Af (·)
∥∥∥

Xp̃

= O (an,nH (an,n))

with q′ ≤ q andp ≤ p̃ such that1 < q (q − 1) ≤ p ≤ q.
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Theorem 2.6.Let (2.1) , (2.2) and(2.6) hold. If f ∈ X p̃ then∥∥∥Hq′

n,Af (·)
∥∥∥

Xp̃

= O

(
ωf

(
π

n + 1

)
X p̃

)
+ O

(
an,nH

(
π

n + 1

))
.

If, in addition,H (≥ 0) instead ofHx satisfies the condition(2.4) then∥∥∥Hq′

n,Af (·)
∥∥∥

Xp̃

= O

(
an,nH

(
π

n + 1

))
with q′ ≤ q andp ≤ p̃ such that1 < q (q − 1) ≤ p ≤ q.

Theorem 2.7. Let (2.1), (2.4) with a functionH (≥ 0) instead ofHx, (2.5) and (2.6) hold.
If f ∈ X p̃ then ∥∥∥Hq′

n,Af (·)
∥∥∥

Xp̃

= O (an,0H (an,0))

with q′ ≤ q andp ≤ p̃ such that1 < q (q − 1) ≤ p ≤ q.

Theorem 2.8.Let (2.1), (2.5) and(2.6) hold. If f ∈ X p̃ then∥∥∥Hq′

n,Af (·)
∥∥∥

Xp̃

= O

(
ωf

(
π

n + 1

)
X p̃

)
+ O

(
an,0H

(
π

n + 1

))
.

If, in addition,H (≥ 0) instead ofHx satisfies the condition(2.4) , then∥∥∥Hq′

n,Af (·)
∥∥∥

Xp̃

= O

(
an,0H

(
π

n + 1

))
with q′ ≤ q andp ≤ p̃ such that1 < q (q − 1) ≤ p ≤ q.

3. AUXILIARY RESULTS

In tis section we denote byω a function of modulus of continuity type.

Lemma 3.1. If (2.3) with 0 < p ≤ q and (2.4) with functionsω andH (≥ 0) instead ofwx

andHx, respectively, hold then

(3.1)
∫ u

0

ω (t)

t
dt = O (uH (u)) (u → 0+) .

Proof. Integrating by parts in the above integral we obtain∫ u

0

ω (t)

t
dt =

∫ u

0

t
d

dt

(∫ π

t

ω (s)

s2
ds

)
dt

=

[
−t

∫ π

t

ω (s)

s2
ds

]u

0

+

∫ u

0

(∫ π

t

ω (s)

s2
ds

)
dt

≤ u

∫ π

u

ω (s)

s2
ds +

∫ u

0

(∫ π

t

ω (s)

s2
ds

)
dt

= u

∫ π

u

ω (s)

s1+ p
q
+1− p

q

ds +

∫ u

0

(∫ π

t

ω (s)

s1+ p
q
+1− p

q

ds

)
dt

≤ u
p
q

∫ π

u

ω (s)

s1+p/q
ds +

∫ u

0

1

t

(
t

p
q

∫ π

t

(ω (s))p

s1+p/q
ds

) 1
p

dt,

since1− p
q
≥ 0. Using our assumptions we have∫ u

0

ω (t)

t
dt = O (uH (u)) +

∫ u

0

1

t
O (tH (t)) dt = O (uH (u))
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and thus the proof is completed. �

Lemma 3.2 ([4, Theorem 5.20 II, Ch. XII]). Suppose that1 < q (q − 1) ≤ p ≤ q and ξ =
1/p + 1/q − 1. If

∣∣t−ξg (t)
∣∣ ∈ Lp then

(3.2)

{
|ao(g)|q

2
+

∞∑
k=0

(|ak(g)|q + |bk(g)|q)

} 1
q

≤ K

{∫ π

−π

∣∣t−ξg (t)
∣∣p dt

} 1
p

.

4. PROOFS OF THE RESULTS

SinceHq
n,Af is the monotonic function ofq we shall consider, in all our proofs, the quantity

Hq
n,Af instead ofHq′

n,Af .

Proof of Theorem 2.1.Let

Hq
n,Af (x) =

{
n∑

k=0

an,k

∣∣∣∣∣ 1π
∫ π

0

ϕx (t)
sin
(
k + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q} 1

q

≤

{
n∑

k=0

an,k

∣∣∣∣∣ 1π
∫ an,n

0

ϕx (t)
sin
(
k + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q} 1

q

+

{
n∑

k=0

an,k

∣∣∣∣∣ 1π
∫ π

an,n

ϕx (t)
sin
(
k + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q} 1

q

= I (an,n) + J (an,n)

and, by(2.1) , integrating by parts, we obtain,

I (an,n) ≤
∫ an,n

0

|ϕx (t)|
2t

dt

=

∫ an,n

0

1

2t

d

dt

(∫ t

0

|ϕx (s)| ds

)
dt

=
1

2an,n

∫ an,n

0

|ϕx (t)| dt +

∫ an,n

0

wxf (t)1

2t
dt

=
1

2

(
wxf (an,n)1 +

∫ an,n

0

wxf (t)1

t
dt

)
= K

(
an,n

∫ π

an,n

wxf (t)1

t2
dt +

∫ an,n

0

wxf (t)1

t
dt

)

≤ K

(
an,n

∫ π

an,n

(wxf (t)L1)
p

t2
dt

) 1
p

+ K

(∫ an,n

0

wxf (t)L1

t
dt

)

≤ K

(
ap/q

n,n

∫ π

an,n

(wxf (t)Lp)
p

t1+p/q
dt

) 1
p

+ K

(∫ an,n

0

wxf (t)Lp

t
dt

)
.

Since f ∈ Lp (wx) and(2.4) holds, Lemma 3.1 and(2.3) give

I (an,n) = O (an,nHx (an,n)) .
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The Abel transformation shows that

(J (an,n))q =
n−1∑
k=0

(an,k − an,k+1)
k∑

ν=0

∣∣∣∣∣ 1π
∫ π

an,n

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

+ an,n

n∑
ν=0

∣∣∣∣∣ 1π
∫ π

an,n

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

,

whence, by(2.2),

(J (an,n))q ≤ (K + 1) an,n

n∑
ν=0

∣∣∣∣∣ 1π
∫ π

an,n

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

.

Using inequality(3.2), we obtain

J (an,n) ≤ K (an,n)
1
q

{∫ π

an,n

|ϕx (t)|p

t1+p/q
dt

} 1
p

.

Integrating by parts, we have

J (an,n) ≤ K (an,n)
1
q

{[
1

tp/q
(wxf (t)Lp)

p

]π

t=an,n

+

(
1 +

p

q

)∫ π

an,n

(wxf (t)Lp)
p

t1+p/q
dt

} 1
p

≤ K (an,n)
1
q

{
(wxf (π)Lp) +

∫ π

an,n

(wxf (t)Lp)
p

t1+p/q
dt

} 1
p

.

Since f ∈ Lp (wx) , by (2.3),

J (an,n) ≤ K (an,n)
1
q

{
(wx (π)) +

∫ π

an,n

(wx (t))p

t1+p/q
dt

} 1
p

≤ K

{
(an,n)

p
q

∫ π

an,n

(wx (t))p

t1+p/q
dt

} 1
p

= O (an,nHx (an,n)) .

Thus our result is proved. �

Proof of Theorem 2.2.Let, as before,

Hq
n,Af (x) ≤ I

(
π

n + 1

)
+ J

(
π

n + 1

)
and

I

(
π

n + 1

)
≤ n + 1

π

∫ π
n+1

0

|ϕx (t)| dt = wx

(
π

n + 1

)
L1

.

In the estimate ofJ
(

π
n+1

)
we again use the Abel transformation and(2.2). Thus(

J

(
π

n + 1

))q

≤ (K + 1) an,n

n∑
ν=0

∣∣∣∣∣ 1π
∫ π

π
n+1

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q
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and, by inequality(3.2),

J

(
π

n + 1

)
≤ K (an,n)

1
q

{∫ π

π
n+1

|ϕx (t)|p

t1+p/q
dt

} 1
p

.

Integrating(2.3) by parts, with the assumptionf ∈ Lp (wx) , we obtain

J

(
π

n + 1

)
≤ K ((n + 1) an,n)

1
q

{(
π

n + 1

) p
q
∫ π

π
n+1

(wx (t))p

t1+p/q
dt

} 1
p

= O

(
((n + 1) an,n)

1
q

π

n + 1
Hx

(
π

n + 1

))
as in the previous proof, withπ

n+1
instead ofan,n.

Finally, arguing as in [3, p.110], we can see that, forj = 0, 1, . . . , n− 1,

|an,j − an,n| ≤

∣∣∣∣∣
n−1∑
k=j

(an,k − an,k+1)

∣∣∣∣∣ ≤
n−1∑
k=0

|an,k − an,k+1| ≤ Kan,n ,

whence

an,j ≤ (K + 1) an,n

and therefore

(K + 1) (n + 1) an,n ≥
n∑

j=0

an,j = 1.

This inequality implies that

J

(
π

n + 1

)
= O

(
an,nHx

(
π

n + 1

))
and the proof of the first part of our statement is complete.

To prove of the second part of our assertion we have to estimate the termI
(

π
n+1

)
once more.

Proceeding analogously to the proof of Theorem 2.1, withan,n replaced by π
n+1

, we obtain

I

(
π

n + 1

)
= O

(
π

n + 1
Hx

(
π

n + 1

))
.

By the inequality from the first part of our proof, the relation(n + 1)−1 = O (an,n) holds,
whence the second statement follows. �

Proof of Theorem 2.3.As usual, let

Hq
n,Af (x) ≤ I (an,0) + J (an,0) .

Since f ∈ Lp (wx) ,by the same method as in the proof of Theorem 2.1, Lemma 3.1 and(2.3)
yield

I (an,0) = O (an,0Hx (an,0)) .
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By the Abel transformation

(J (an,0))
q ≤

n−1∑
k=0

|an,k − an,k+1|
k∑

ν=0

∣∣∣∣∣ 1π
∫ π

an,0

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

+ an,n

n∑
ν=0

∣∣∣∣∣ 1π
∫ π

an,0

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

≤

(
∞∑

k=0

|an,k − an,k+1|+ an,n

)
∞∑

ν=0

∣∣∣∣∣ 1π
∫ π

an,0

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

.

Arguing as in [3, p.110], by(2.5), we have

|an,n − an,0| ≤
n−1∑
k=0

|an,k − an,k+1| ≤
∞∑

k=0

|an,k − an,k+1| ≤ Kan,0,

whencean,n ≤ (K + 1) an,0 and therefore
∞∑

k=0

|an,k − an,k+1|+ an,n ≤ (2K + 1) an,0

and

(J (an,0))
q ≤ (2K + 1) an,0

∞∑
ν=0

∣∣∣∣∣ 1π
∫ π

an,0

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

.

Finally, by(3.2),

J (an,0) ≤ K (an,0)
1
q

{∫ π

an,0

|ϕx (t)|p

t1+p/q
dt

} 1
p

and, by(2.3),
J (an,0) = O (an,0Hx (an,0)) .

This completes of our proof. �

Proof of Theorem 2.4.We start as usual with the simple transformation

Hq
n,Af (x) ≤ I

(
π

n + 1

)
+ J

(
π

n + 1

)
.

Similarly, as in the previous proofs, by(2.1) we have

I

(
π

n + 1

)
≤ wxf

(
π

n + 1

)
L1

.

We estimate the termJ in the following way(
J

(
π

n + 1

))q

≤
n−1∑
k=0

|an,k − an,k+1|
k∑

ν=0

∣∣∣∣∣ 1π
∫ π

π
n+1

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

+ an,n

n∑
ν=0

∣∣∣∣∣ 1π
∫ π

π
n+1

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

≤

(
∞∑

k=0

|an,k − an,k+1|+ an,n

)
∞∑

ν=0

∣∣∣∣∣ 1π
∫ π

π
n+1

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q

.
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From the assumption(2.5), arguing as before, we can see that

J

(
π

n + 1

)
≤ K

(
an,0

∞∑
ν=0

∣∣∣∣∣ 1π
∫ π

π
n+1

ϕx (t)
sin
(
ν + 1

2

)
t

2 sin 1
2
t

dt

∣∣∣∣∣
q) 1

q

and, by(3.2) ,

J

(
π

n + 1

)
≤ K (an,0)

1
q

{∫ π

π
n+1

|ϕx (t)|p

t1+p/q
dt

} 1
p

.

From(2.5) , it follows thatan,k ≤ (K + 1) an,0 for anyk ≤ n, and therefore

(K + 1) (n + 1) an,0 ≥
n∑

k=0

an,k = 1,

whence

J

(
π

n + 1

)
≤ K ((n + 1) an,0)

1
q

{(
π

n + 1

) p
q
∫ π

π
n+1

|ϕx (t)|p

t1+p/q
dt

} 1
p

.

≤ K (n + 1) an,0

{(
π

n + 1

) p
q
∫ π

π
n+1

|ϕx (t)|p

t1+p/q
dt

} 1
p

.

Sincef ∈ Lp (wx), integrating by parts we obtain

J

(
π

n + 1

)
≤ K (n + 1) an,0

π

n + 1
Hx

(
π

n + 1

)
≤ Kan,0Hx

(
π

n + 1

)
and the proof of the first part of our statement is complete.

To prove the second part, we have to estimate the termI
(

π
n+1

)
once more.

Proceeding analogously to the proof of Theorem 2.1 we obtain

I

(
π

n + 1

)
= O

(
π

n + 1
Hx

(
π

n + 1

))
.

From the start of our proof we have(n + 1)−1 = O (an,0) , whence the second assertion also
follows. �

Proof of Theorem 2.5.We begin with the inequality∥∥Hq
n,Af (·)

∥∥
Xp̃
≤ ‖I (an,n)‖

Xp̃
+ ‖J (an,n)‖

Xp̃
.

By (2.1) , Lemma 3.1 gives

‖I (an,n)‖
Xp̃
≤
∫ an,n

0

‖ϕ (t)‖
Xp̃

2t
dt

≤
∫ an,n

0

ωf(t)X p̃

2t
dt

= O (an,nH (an,n)) .
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As in the proof of Theorem 2.1,

‖J (an,n)‖
Xp̃
≤ K (an,n)

1
q

∥∥∥∥∥∥
{∫ π

an,n

|ϕ (t)|p

t1+p/q
dt

} 1
p

∥∥∥∥∥∥
Xp̃

≤ K (an,n)
1
q

{∫ π

an,n

‖ϕ (t)‖p

Xp̃

t1+p/q
dt

} 1
p

≤ K (an,n)
1
q

{∫ π

an,n

ωf(t)X p̃

t1+p/q
dt

} 1
p

,

whence, by(2.6) ,

‖J (an,n)‖
Xp̃

= O (an,nH (an,n))

holds and our result follows. �

Proof of Theorem 2.6.It is clear that∥∥Hq
n,Af (·)

∥∥
Xp̃
≤
∥∥∥∥I ( π

n + 1

)∥∥∥∥
Xp̃

+

∥∥∥∥J ( π

n + 1

)∥∥∥∥
Xp̃

and immediately∥∥∥∥I ( π

n + 1

)∥∥∥∥
Xp̃

≤
∥∥∥∥w · f

(
π

n + 1

)
1

∥∥∥∥
Xp̃

≤ ωf

(
π

n + 1

)
X p̃

and ∥∥∥∥J ( π

n + 1

)∥∥∥∥
Xp̃

≤ K (an,n)
1
q

{∫ π

π
n+1

‖ϕ (t)‖p

Xp̃

t1+p/q
dt

} 1
p

≤ K ((n + 1) an,n)
1
q

{
π

n + 1

∫ π

π
n+1

ωf(t)X p̃

t1+p/q
dt

} 1
p

≤ K ((n + 1) an,n)
1
q

π

n + 1
H

(
π

n + 1

)
≤ K (n + 1) an,n

π

n + 1
H

(
π

n + 1

)
= O

(
an,nH

(
π

n + 1

))
.

Thus our first statement holds. The second one follows on using a similar process to that in the
proof of Theorem 2.1. We have to only use the estimates obtained in the proof of Theorem 2.5,
with π

n+1
instead ofan,n,and the relation

(n + 1)−1 = O (an,n) .

�

Proof of Theorem 2.7.As in the proof of Theorem 2.5, we have∥∥Hq
n,Af (·)

∥∥
Xp̃
≤ ‖I (an,0)‖

Xp̃
+ ‖J (an,0)‖

Xp̃
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and

‖I (an,0)‖
Xp̃

= O (an,0H (an,0)) .

Also, from the proof of Theorem 2.3,

‖J (an,0)‖
Xp̃
≤ K (an,0)

1
q

∥∥∥∥∥∥
{∫ π

an,0

|ϕ· (t)|p

t1+p/q
dt

} 1
p

∥∥∥∥∥∥
Xp̃

≤ K (an,0)
1
q

{∫ π

an,0

ωf(t)X p̃

t1+p/q
dt

} 1
p

and, by(2.6) ,

‖J (an,0)‖
Xp̃

= O (an,0H (an,0)) .

Thus our result is proved. �

Proof of Theorem 2.8.We recall, as in the previous proof, that∥∥Hq
n,Af (·)

∥∥
Xp̃
≤
∥∥∥∥I ( π

n + 1

)∥∥∥∥
Xp̃

+

∥∥∥∥J ( π

n + 1

)∥∥∥∥
Xp̃

and ∥∥∥∥I ( π

n + 1

)∥∥∥∥
Xp̃

≤ ωf

(
π

n + 1

)
X p̃

.

We apply a similar method as that used in the proof of Theorem 2.4 to obtain an estimate for
the quantity

∥∥J ( π
n+1

)∥∥
Xp̃

,

∥∥∥∥J ( π

n + 1

)∥∥∥∥
Xp̃

≤ K (n + 1) an,0

∥∥∥∥∥∥
{(

π

n + 1

) p
q
∫ π

π
n+1

|ϕx (t)|p

t1+p/q
dt

} 1
p

∥∥∥∥∥∥
Xp̃

≤ K (n + 1) an,0

{(
π

n + 1

) p
q
∫ π

π
n+1

‖ϕ· (t)‖p

Xp̃

t1+p/q
dt

} 1
p

≤ K (n + 1) an,0

{(
π

n + 1

) p
q
∫ π

π
n+1

ωf(t)X p̃

t1+p/q
dt

} 1
p

and, by(2.6) , ∥∥∥∥J ( π

n + 1

)∥∥∥∥
Xp̃

≤ K (n + 1) an,0
π

n + 1
H

(
π

n + 1

)
≤ Kan,0H

(
π

n + 1

)
.

Thus the proof of the first part of our statement is complete.
To prove of the second part, we follow the line of the proof of Theorem 2.6. �
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