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1. INTRODUCTION

Let L? (1 < p < o0) [C] be the class of altr—periodic real-valued functions integrable
in the Lebesgue sense withth power [continuous] ovep = [—r, 7] and letX? = L? when
1 <p<ooorX?=Cwhenp= cc. Let us define the norm of € X? as

(fQ |f () da;)’l’ when 1 < p < oo,

SUP,cq | f ()] when p = oo,

1 1lr = IF Ol =
and consider its trigonometric Fourier series

Sf(x) = # + Z(a,,(f) cosvx + b,(f)sinvzx)

with the partial sums;, f.

Let A := (an,x) (k,n=0,1,2,...) be alower triangular infinite matrix of real numbers and
let the A—transforms of .S, f) be given by

Toaf () =) ankSef (x) = f (x) (n=0,1,2,...)
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and

S

HY A f (v) = {Zan,ﬂSkf(x)—f(xﬂq} (g>0,n=0,1,2,...).

As a measure of approximation, by the above quantities we use the pointwise characteristic

wes @ = {3 [lentor dt}]i ,

oo (t) = fle+t)+ fx—t)—2f(x).
w, f(9)r» is constructed based on the definition of Lebesgue péitits points), and the mod-
ulus of continuity forf in the spaceX? defined by the formula

where

Wf(0)xp = sup [l (h)llxs-
0<[h|<s

We can observe that wifhi > p, for f € X7, by the Minkowski inequality

[w- f(O)pll ; < wf (8)xs-

The deviationT;, 4 f was estimated by P. Chandid [1, 2] in the normfokE C and for
monotonic sequences, = (a, ;). These results were generalized by L. Leindler [3] who
considered the sequences of bounded variation instead of monotonic ones. In this note we shall
consider the strong meatig’ , f and the integrable functions. We shall also give some results
on norm approximation. ’

By K we shall designate either an absolute constant or a constant depending on some param-
eters, not necessarily the same of each occurrence.

2. STATEMENT OF THE RESULTS

Let us consider a functiom, of modulus of continuity type on the intervgl, +00), i.e., a
nondecreasing continuous function having the following propertig$0) = 0, w, (6; + d2) <
wy (01) + w, (82) forany0 < §; < 5, < 07 + 02 and let

LP (wy) ={f € L? : wy f (6) 1, < wy(9)}.
We can now formulate our main results.
To start with, we formulate the results on pointwise approximation.

Theorem 2.1. Leta,, = (a, ) Satisfy the following conditions:

n

(2.1) Apm > 0, Z anp =1
k=0
and
m—1
(22) |a'n,k: - a'n,k+l| S Kan,ma
k=0
where
- d n=0,1,2 (2;1—0)
m=20,1,....n and n=0,1,2,... o= 0)-
Supposev, is such that
1
v [T (wa (1) 7
(2.3) {uq/u e dt ¢ =0 (uH, (u)) as u— 0+,
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whereH,, (u) > 0,1 < p < ¢gand

(2.4) /H O(tH,(t)) as t—0+.

If f € L”(w,),then
H,qL’Af () = O (annHz: (ann))
with ¢ € (0,¢] andg suchthatl < ¢(¢—1) <p <gq.

Theorem 2.2. Let (2.1), (2.2)) and (2.3) hold. If f € L” (w,) then

#2000 (e (757)) +0 (et (75

and if, in addition,(2.4) holds then

17,1 (@) =0 (onat (7))

with ¢ € (0,¢] andg suchthatl < ¢(¢—1) <p <gq.
Theorem 2.3.Let (2.1), (2.3)), (2.4) and

(25) Z ’an,k - an,k+l‘ S Kan,m;

k=m

where
m=20,1,....,n and n=0,1,2,...
hold. If f € L? (w,) then
HY \f (2) = O (anoH, (any))
with ¢ € (0,¢] andg suchthatl < ¢(¢—1) <p <gq.

Theorem 2.4. Let us assume thg.1)), (2.3) and (2.5) hold. If f € L? (w,), then

-0 55)) 0 oo (:57)

If, in addition, (2.4) holds then

HY ,f () =0 (anvon (n : 1))

with ¢ € (0,¢] andg suchthatl < ¢(¢—1) <p <gq.

Consequently, we formulate the results on norm approximation.

Theorem 2.5. Leta,, = (a,,») satisfy the condition§2.1)) and (2.2). Supposevf(-)xs is such
that

(2.6) {u / (Wf(t)xs)” dt}l—O(uH(u)) as u— 0+

1I’
t+

holds, withl < p < gandp > p, whereH (> 0) instead ofH, satisfies the conditiof.4).
If f € XPthen
H =0 (ann (an,n))

with ¢ < ¢ andp < psuch thatl < q(q— 1)<p<q.
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Theorem 2.6.Let (2.1)) , (2:2) and (2.6) hold. If f € X? then

|rzaro] =0 (e (53),) +0 (or (51))

If, in addition, # (> 0) mstead offf, satisfies the conditiof2.4) then

Jzar o =0 (ot (755))

with¢ < ¢ andp < psuch thatl < q(q— 1)<p<q.

Theorem 2.7. Let (2.1)), (2.4) with a functionH (> 0) instead ofH,, (2.5) and (2.6 hold.
If f € XPthen
| ar o)
X

withq < ¢ andp < psuchthatl <gq(¢g—1) <p<gq.
Theorem 2.8.Let (2.1), (2.5) and (2.6) hold. If f € X? then

o], -0 (o (), ) +o(oon (559)

If, in addition, H (> 0) instead ofH, satisfies the conditioff.4) , then

[asel, o (wot ()

with ¢ < ¢ andp < psuch thatl < q(q— 1)<p<gq.

= O (anoH (anp))

3. AUXILIARY RESULTS
In tis section we denote hy a function of modulus of continuity type.

Lemma 3.1. If (2.3) with 0 < p < ¢ and (2.4)) with functionsw and H (> 0) instead ofw,
and H,, respectively, hold then

(3.1) /0 “T“)dt = O (uH (v))  (u—04).

Proof. Integrating by parts in the above integral we obtain

/Ou@dt:/outd—(t )dt

5 Ho(/“’ o)
([ )

[ st [ (] )
L e [ [ )

sincel — ~ > 0. Using our assumptions we have

/0“ W= 0 (utt () + /0 SO (HH (1) di = O (uH (u)

IN

IN
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and thus the proof is completed. O

Lemma 3.2 ([4, Theorem 5.20 I, Ch. XII]) Suppose that < q(¢—1) < p < gand{ =
I/p+1/qg—1.1f ’t g (t) | € L? then

(3.2) {‘ao +Z DN+ |br(g)| )}q < K{/jr }t—fg(t)‘Pdt}p

4. PROOFS OF THE RESULTS

SinceHg,Af is the monotonic function of we shall consider, in all our proofs, the quantity
H? ,f instead ofHf? , f.

Proof of Theorern 2]1Let

- 1 [ sin (k+ 3)t
=13 dus —/ z (1) (.—12)dt
— T Jo 2sin 5t

=1 (ann)+ J (ann)
and, by(2.1) , integrating by parts, we obtain,

I(an,) < / |§0az( lez )],

ann 1 g
L (s) ds ) dt
/0 2tdt</ [ ( ‘5>

R g f (1),
_ /O |%(t)|dt+/0 wel Wy 4,

2055

2t
_ 1 <wmf (an’n>1 +/ mn U}:cf (t)l dt)
2 0 t
. / wxf<t>1dt+/" wxf(tndt)
7 An.n tQ 0 t
™ p % an,n
<K ann/ G (D @Ll) dt) +K </ wel O dt)
, an,n t 0 t
/ T (wef (t)Lp)p ' o we f (1)
<K aﬁ’g/am—t”p/q a) v ([ =)

Since f € L? (w,) and(2.4) holds, Lemma 3]1 anf®.3) give
I (an,n) =0 (an,on (an,n)> .

an,n
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The Abel transformation shows that

n—1 k 1 q
1 /7 sm(y—i——)t

J n,n n n - —th
( (@nn))" = (an = akﬂzw/ 2sin 1¢

k):O V= n,n 2

q
"1 [T sin(l/+l)t
an, ; W/an’n(p ®) 28111%75

whence, by(2.2)),

(J (ann)! < (K +1)ay,

q

T : 1
L el Dty

2sin %t

Using inequality(3.2)), we obtain

e L7
I (ann) < K (apn) {/ tl+(p/q| dte .

Integrating by parts, we have

J<an,n>3f<<an,n>i{[ L (waf (), >r

Since f € L? (w,) , by (2.3),

T (@) < K (a0, {<wx )+ [ %dt}

< K{(an,n)g /7r %—(:/)fdt}p
= O<ann (ann>)~

Thus our result is proved.
Proof of Theorem 2]2Let, as before,

q < T T
H"vAf(x)—I(n+1)+‘]<n+1)
s n+1 = s
I < D
() <™= [Te o= ()

In the estimate of (;) we again use the Abel transformation ). Thus

T 1 "1 [ 51n(1/+—)t
J <(K+1)a,, - L () ——22dt
( (n+1>) < (K+1an, Z W/ﬁgp Q QSin%t

v=0 n+1

and

q
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and, by inequality(3.2)),

1
T )T e ) T
J <n+1> < K (app)e {/,, rore dt % .

n+1

Integrating(2.3)) by parts, with the assumptiohe L? (w,), we obtain

(55) <t {(2) [ )

n+1

1 e m
=0 1)ann)a —Hx
(1000 0 (535))
as in the previous proof, with’5 instead ofa,, .
Finally, arguing as in[3, p.110], we can see that,ffet 0,1,...,n — 1,

n—1 n—1
|an,j - an,n‘ < Z Qp k. — Qp k+1 S |an,k - an,k+1| S Kan,n )

k=j k=0

whence
i <(K+1ays,
and therefore
(K+1)(n+1)ap,>> ap; =1
§=0

This inequality implies that

(5) o (e (5))

and the proof of the first part of our statement is complete.
To prove of the second part of our assertion we have to estimate theé (eﬁt,q) once more.
Proceeding analogously to the proof of Theo@ 2.1, with replaced by-"-, we obtain

() o (Fm ()

By the inequality from the first part of our proof, the relatiom+ 1)~' = O (a,,) holds,
whence the second statement follows. O

Proof of Theorem 2]3As usual, let
HY jf () < T (ano) + J (ano) -

Since f € L? (w,) ,by the same method as in the proof of Theofem 2.1, Lefnnja 3.12a3)d
yield

I (an,o) =0 (an,OHx (an,o)) :
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By the Abel transformation

. nol ol sm(u+2)t
(J (ano))* < Z |G — @ k1] Z - @q (t) 9 sin Lt
k=0 v=0 an,0 2
q
11 [T sin (1/ + l) t
+ n,n - x t —2 dt
a’zw/ ex (1) 2sin 1t
v=0 an,0 2
) e’ q
I sin (V + ) t
< o < 2
=~ (Z |an,k an,k+1| + anﬂ) Z T /a P ( ) 2 sin lt
k=0 v=0 n,0
Arguing as in[[3, p.110], by2.5)), we have
n—1 fe’e)
’an,n - an,O‘ S Z ’an,k - an,k+1| S Z ‘an,k - an,kJrll S Kan,Oa
k=0 k=0
whenceua,,,, < (K + 1) a,, o and therefore
Z ‘an,k - an,kJrl‘ + Apon S (2K + 1) Q.0
k=0

and
q

(J (an0)? < (2K + 1) ano y

Finally, by (3.2)),

™ : 1
l/ - (t) sin (1/+2)tdt
T Jano

2 sin %t

1
" . ()] !

J (ano) = O (anoH; (anp)) -

Q=

J(an,0> < K (an,(])
and, by(2.3),

This completes of our proof.

Proof of Theorer 2]4We start as usual with the simple transformation

™ (e
H! <I|——= .
Similarly, as in the previous proofs, we have

[(n+1) < ] (n+1)L1'

We estimate the terni in the following way

q n—1 k
m
J < n,k — Un
( (n+1)) _;_O‘a g a’kﬂ‘;

ZSin%t
n . q
1 (™ sm(y—i—l)t
n — = (T — 27t
+a’zﬂ/«w() 2sin 1t
v=0 n+1 2
o <11 (7 sm(z/—i——)t
< n,k — Un + n,n - x . 2
_<kZ:0’@ k= Aokl a,); /LSO (t) 9 sin Lt
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From the assumptiof2.5)), arguing as before, we can see that

T [oe)
<
J(n+1) _K<an’0,,z:0

and, by(3.2),
7T T e @F 7
J<n+1> < K (o) {/ Ly

n+1

From (2.5)) , it follows thata,, , < (K + 1) a,o foranyk < n, and therefore

2 (T
ﬁtp ) QSin%t
1

n—+

1 (7 sin(l/—i-%)t
L

" 4
dt>

(K+1)(n+1)ayo > Zan,k =1,
k=0

1
m L T\ [T e @OF 7
J(n+1)§K((n+1)an,o) {(n—ﬂ> /11 ey dt » .
T\ e @F "
SK(n+1)an,o{(n+1) /W eyl
n+1

Sincef € L? (w,), integrating by parts we obtain

s s s
<K 1 H

T
< Ka, oH,
= S 8n0 (n—l—l)

and the proof of the first part of our statement is complete.
To prove the second part, we have to estimate the Ie(rﬁ—l) once more.
Proceeding analogously to the proof of Theofen 2.1 we obtain

(7)o (e (59))-

From the start of our proof we have + 1) " = O (a,0) , whence the second assertion also
follows. O

whence

Proof of Theorer 2]5We begin with the inequality
||HZ,Af()HX5 < ||](an,n)

By (2.1) , Lemmd 3.1 gives

onn lp (O]
M (ann)ll - < / e g
N xp 0 2t

< / o Wf(t)xﬁdt
0

I @l

X

2t
= O (annH (any))-
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As in the proof of Theorein 2.1,

Q|

1
" er )\’
1 (@nn)ll, < K (@n) { |

XP
1
- e, Y\
An,n t1+p/q t
1 " owf(t)xe ’
< K (any)9 {/a e dt} :
||J(an,n)||xz5 =0 (an,nH (an,n))

holds and our result follows. O

Proof of Theorer 2|6lt is clear that

q . T T
ol <) ()| ()
and immediately

7T T T
PG =l GR)), = G),
T
V()

Q=

< K (ann)

whence, by(2.6) ,

and

=

1
m @I, *
NSKMW){/ﬂ_ﬁwa

Xp n+1

1 m T owf(t)xs !
< Kt 1) ann)t {n—i—l/w Hte/a dt}
n+1
T ("
n+1 n+1
T T
<K 1) ann H
< o5 (757)

_O<a"” (nil))

Thus our first statement holds. The second one follows on using a similar process to that in the
proof of Theorenm 2]1. We have to only use the estimates obtained in the proof of Theogrem 2.5,
with 5 instead ofu,, ,,,and the relation

=

Q=

<K((n+1)ann)

(n+ 1)_1 = O (ann)-

Proof of Theorem 2|7As in the proof of Theoremn 2.5, we have
[t O, < M @0l + 1 (ano)l
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and
1 (ano)ll , = O (anoH (ano)) -
Also, from the proof of Theorein 2.3,

1
A e
1 (@)l < K (an0) { / et

1

1 T wf t) 5 P
< K (an0)® { / tl(ﬂg jqf dt}
an,0

17 (@no)ll = O(anoH (anp)) -

Thus our result is proved. O

XP

and, by(2.6)

Proof of Theorer 2]8We recall, as in the previous proof, that

o, <[ )]+ (F)l,
P&, =),

We apply a similar method as that used in the proof of Thegrei 2.4 to obtain an estimate for

the quantity||.J (=25
T\ [T et
<K (n+1)ano {(n—i—l) ) th/q }

and

+1)H =7
n XPp
n+1

T
V)
lle- (DI,
SK(n—i—l)an,o{(nil) /7r t1+p/q }
SK(nJrl)an’O{(nil) /jw;iip)/)qcpdt}p

T e T
J <K(m+1)a, H
H (n+1)H =R e (n+1)
XP

T
< Ka, oH .
= S np (n—l—l)

Thus the proof of the first part of our statement is complete.
To prove of the second part, we follow the line of the proof of Thedrein 2.6. O

XP

and, by(2.6)
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