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1. INTRODUCTION AND NOTATION

Definition 1.1. A real entire functionp(z) := >, , %z is said to be in thé.aguerre-P6lya
class writtenp(z) € L-P, if ¢(x) can be expressed in the form

(1.1) o(x) = calte v O H (1 + ﬁ) e, 0<w< oo,
k=1 Tk

wherec, 5, 2, € R, « > 0, n is a nonnegative integer and,- , 1/2% < co. If w = 0, then, by
convention, the product is defined to be 1.

The significance of the Laguerre-Pdlya class in the theory of entire functions stems from the
fact that functions in this classnd only thesgare the uniform limits, on compact subsets of
C, of polynomials with only real zeros. For various properties and algebraic and transcendental
characterizations of functions in this class we refer the reader to Polya and Schur [11, p. 100],
[12] or [9, Kapitel II].

If o(z) == > 5o, Za* € L-P, then theTuran inequalitiesy? — v,_17+1 > 0 and the
Laguerre inequalities®) ()% — p(x) =YD+ (z) > 0 are known to hold foralk = 1,2, . ..
and for all realx (see [2] and the references contained therein). In this paper we consider
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2 THOMAS CRAVEN AND GEORGECSORDAS

generalizations of both of these inequalities. For some of these generalizations to hold, we must
restrict our investigation to the following subclassGP.

Definition 1.2. A real entire functionp(z) := > ;7 %% in L-P is said to be inl-P* if
v > 0 for all k. In particular, this means that all the zerosdie in the interval(—oo, 0].

Now if p(z) € L-PT, theny can be expressed in the form

1.2 o(x) = cae” H (1 + ﬁ) , 0<w <,

A
k=1 k

wherec,3 > 0, z; > 0, n is a nonnegative integer afd,-, - < oo [9, Section 9]. If

T
o(x) = Yooy %ak e L-P, then, following the usual convention, we call the sequence of
coefficients{~x }22,, amultiplier sequence

In Section 2, the Laguerre inequalipy(z)* — ¢(z)¢”(z) > 0 is generalized to a system
of inequalitiesL, (p(z)) > 0 for all n = 0,1,2,... and for allz € R, whereL,(¢(z)) =
¢'(x)? — p(x)p”(z) andp(z) € L-P (cf. [10, Theorem 1]). This system of inequalities
characterizes functions if+P (Theoreny 2.R). We show that the (nonlinear) operafgrsatisfy
a simple recursive relation (Theorém|2.1) and use this fact to give a different proof of a result of
Patrick [10, Theorem 1]. This, together with the converse of Patrick’s theorem|(cf. [5, Theorem
2.9]), yields a necessary and sufficient condition for a real entire function (with appropriate
restrictions on the order and type of the entire function) to belong to the Laguerre-Pdlya class
(Theoreni 2.R).

In Sectior] B, we consider a different collection of inequalities based on the Laguerre inequal-
ity, namely an iterated form of them. Our original proof of the second iterated inequalities for
functions inL-P* [2, Theorem 2.13] was based on the study of certain polynomial invariants.
In Sectior{ B, we give a shorter and a conceptually simpler proof of these inequalities (Propo-
sition[3.2 and Theoren 3.3). Moreover, the proof of Proposftioh 3.2 leads to new necessary
conditions for entire functions to belong P+ (Corollary[3.4). Evaluating these at= 0
yields the classical Turan inequalities and iterated forms of them, considered in $éction 4. In
Sectior] 4, we show that for multiplier sequences which decay sufficiently ragdidlye higher
iterated Turan inequalities hold (Theorgém|4.1). Our main result (Thelorgm 5.5) asserts that the
third iterated Turan inequalities are valid for all functions of the fastw) = 22+ (z), where
¢(x) € L-P*. An examination of the proof of Theorgm b.5 (see also Lehmla 5.4) shows that
the restriction thap(z) has a double zero at the origin is merely a ploy to render the, otherwise
very lengthy and involved, computations tractable.

2. CHARACTERIZING L-P VIA EXTENDED LAGUERRE |INEQUALITIES

Let ¢(x) denote a real entire function; that is, an entire function with only real Taylor co-
efficients. Following Patrick [10], we define implicitly the action of the (nonlinear) operators
{L,},, takingy(z) to L, (¢(x)), by the equation

(2.1) oz +iy)l” = oz +iy)p(x —iy) = > Lu(p@)y™, (z,y €R).

In the sequel, it will become clear that,(o(z)) is also a real entire function (cf. Remark[2.4).

In [10], Patrick shows that ip(z) € £L-P, thenL,(¢(x)) > 0foralln = 0,1,2,... and for

all x € R. The novel aspect of our approach to these inequalities is based on the remarkable
fact that the operators,, satisfy a simple recursive relation (Theorem| 2.1). By virtue of this
recursion relation, we obtain a short proof of Patrick’s theorem. This, when combined with the

J. Inequal. Pure and Appl. Math3(3) Art. 39, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ITERATED LAGUERRE AND TURAN INEQUALITIES 3

known converse result[5, Theorem 2.9], yields a complete characterization of functi6n® in

(Theorenj 2.R).

We remark that generalizations of the operators defin (2.1) are given by Dilcher and Sto-
larsky in [€]. These authors study the distribution of zerog )(<p(:c)) for their generalized
operatorsL{™ and certain functions(z).

Theorem 2.1.Lety(x) be any real entire function. Then the operatdsssatisfy the following:

(1) L,((x + a)p(x)) = (x + a)*Ly(o(2)) + Ly—1(p(x)), fora e Randn =1,2,. . .;
(2) Lo(p) = ¢*
(3) L,(c) = 0for any constant andn > 1.

Proof. Parts(2) and(3) are clear from the definition. To chek), we compute as follows:

(2 +a+iy)p(e+iy))” = (x+a)° +3°) > Lale(x))y™

n=0

= (@ +a) Y L(p(@)y™" + Y Lu(p(x))y™
= (z+0a)® ) La(e@)y™ + > L1 (e(x))y™

= (4 a)’Lo(p(2)) + Y _[(z + a)*La(p(2)) + Ln-1((2))]y™",

from which (I)) follows. O

Using the recursion of Theorgm 2.1, we obtain the following characterization of functions in
L-P.
Theorem 2.2. Lety(x) # 0 be a real entire function of the foraT*** ¢, (z), wherea > 0 and
¢1(x) has genus 0 or 1. Thep(z) € L-Pifand only ifL,,(¢) > 0foralln =0,1,2,....

Proof. First assume that all,,(¢) > 0. If ¢ ¢ L-P, theny has a nonreal zerg, = xy + iy
with yo # 0. Hence

0= lp(20)]* =) La(p(ao))yd" -

Since all terms in the sum are nonnegative anek 0, we must have.,,(p(z()) = 0 for all n.
But this gives|o(zo + iy)* = > oo La(¢(x0))y** = 0 for any choice ofy € R, whencep
itself must be identically zero.

Conversely, assume thate £-P. Sincey can be uniformly approximated on compact sets
by polynomials with only real zeros, it will suffice to prove that(x) > 0 for polynomials
. For this we use induction on the degreeof From Theoren 2|@) and (3), we see that
L.(¢) > 0foranyn if ¢ has degre®. If the degree ofy is greater than zero, we can write
p(x) = (x + a)g(z), wherea € R andg(x) is a polynomial. By the induction hypothesis,
L,(g9(z)) > 0foralln > 0 and allz € R. Hence, Theorein 2(I) gives the desired conclusion
for . O

Next we show that the explicit form df,,() given in [10] can also be obtained from Theo-
rem2.1.
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4 THOMAS CRAVEN AND GEORGECSORDAS

Theorem 2.3.Foranyy € L-P, operatorsL, () satisfying the recursion and initial conditions
of Theorenji 2]1 are uniquely determined and are given by

(2.2) L (o(z)) = Z (_(Ql:;n (Qj) D ()" () .

Proof. As before, it will suffice to prove the result for polynomialsdaP. It is clear that the
recursion formula of Theorein 2.1, together with the initial conditions given there, uniquely
determine the value af,, on any polynomial with only real zeros. Thus it will suffice to show
that the formula given inf (2 2) satisfies the conditions of Thegrein 2.1. We do a double induction,
beginning with an induction on.

If n =0, thenLy(p) = ¢* by Theorenj 2]1 and this agrees with {2.2). Assume:that 0
and that[(2.R) holds fok,,_,. Now we begin an induction on the degreeof

If ¢ is a constant, theit,,(y) = 0 by Theorenj 2]1, which agrees with (2.2). Assume the
formula holds for polynomials of degree less thiag 0. Then we can write)(x) = (z+a)g(x),
wherea € R andL,_(g) andL,(g) are given by[(2]2). The conclusion now follows from a
computation using Theorem ¥1). Indeed,

Lulpla)) = Lu((z+ (@)
= (o + 0P L9(e) + Lo a(9(2)
~ a3 Ol ()@

=0 J

2n— 2 ]—i—n 1 9 — 9 ' '
X g (7))

J

Also, using Leibniz’s formula for hlgher derivatives of a product,
2n ;
(=7 20\ Gy (ony)
ZW e () (@)
7=0

J
-5
+ (x + a)(2n = ))gV g 4 (z + a)?gV g Y]
—@+aPd (_(21?;, ()o@

. J

J+n

( ) [7(2n = )g" Vg + (2 4 a) gV Vgt

+ Z 2n — 2)! ( : )9(”(50)9(2”‘2‘”(95),

J

because the coefficient of + a) is shown to be zero by

2n ;
—1)7t" /2n o e Ny el
§ (=1) ( _ ) []g(J D gn=) 4 (2n _j)g(J)g(Q 1 J)}

pas (2n)! \ j
= ((;7137 [;(_1) <2jn>jg(y 1)9(2n D JZO (2;1) (2n—])g(ﬂ)g(2n—j—1)]
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since( V) (G +1) = () (2n — ). O

The main emphasis here has been that the result of Théorem 2.2 depends only on the recursive
condition of Theorer 2]1, and this seems to be the easiest way to prove Thedrem 2.2. However,
the operatord.,,(¢) can be explicitly computed more easily than from the recursive condition
as was done in Theorgm 2.3, as well as in greater generality.

Remark 2.4. For any real entire functiop, the operatord., (¢) defined by equatior (2.1) are
given by the formula

2n —1)it" /92

Proof. By Taylor’s theorem, for each fixed € R,

)w(j)(x)w(%—j)(x)'

< py(2n)
h(y) == le(x +iy)|” = oo+ iy)e(x —iy) = h(z—ng?)zf",

n=0

where we have used the fact thiaty) is an even function (of). Let D, = d/dy denote
differentiation with respect tg. Then by Leibniz’s formula, for higher derivatives of a product,
we have

h(0) = (2,? ) (Dyela +iy)) o (D olz —iy)) _,

= i (2,? ) (—1)" ™ (2)* 9 (z)

= (2n)! Lo (p(2)),
by the uniqueness of the Taylor coefficients. O

3. ITERATED LAGUERRE INEQUALITIES
Definition 3.1. For any real entire functiop(z), set
T (p(@) == (pM (@) = " D (@)p® (@) if k> 1,
and forn > 2, set

T (p(2)) == (T V() = T V(@) TV (p(2)) i k>n>2.

Remark 3.1.  (a) Note that with the notation above, we halig’)(¢) = 7," (o)) for
k>nandj=0,1,2....
(b) The authors’ investigations of functions in the Laguerre-Pdlya class((]2], [3]) have led
to the following problem.
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Open Problem If ¢(x) € L-P*, are the iterated Laguerre inequalities valid for all
x > 0? Thatis, is it true that

(3.1) T (p(x)) >0 forall x>0 and k> n?

(c) If we assume only thap(z) € L£L-P, then the |nequaI|t3T(”)( (x)) > 0,z > 0, need
not hold in general, as the following example shows. Consider, for exampie,=
(z — 2)(z + 1)2 € L-P. ThenT,;? (p(z)) = 2162(—2 + 3z + z*) and so we see that
T,?) (p(2)) is negative for all sufficiently small positive values:af

(d) There are, of course, certain easy situations for which the iterated Laguerre inequalities
can be shown to always hold. For exampleyift) = (z + a)e*, a > 0 or p(x) =
(x+a)(x+0b)e”, a,b> 0, thisis true. Since the derivative of such a function again has

the same form, the remarks above indicate that it suffices to shoW'kfF?ata(x)) >0
fork=1,2,... and allx > 0. For the quadratic case, we obtain

T (p())
{ 2222 ((a+2)* + (b+ )2+ 2(k — 1)(20 +a+ b+ k> — k), for k odd

22" 12" (z 4 a) (@ +b) + k(2z +a+b+k—1)), for k even
and each expression is clearly nonegative for all real
(e) A particularly intriguing open problem is the casewfr) = =™ in (3.1). Special
cases, such as the iterated Turan inequalities discussed in the next section, can be easily
established (i.eZ,"” (z") = (n!)?"), but the general case 8™ (z" %), k = 0,1,2, ...,
seems surprisingly difficult.

In [2, Theorem 2.13] it is shown thgt (3.1) is true whenr= 2; that is the double Laguerre
inequalities are valid. Here we present a somewhat different and shorter proof (which still
depends on Theorerps .2 2.3) in the hope that it will shed light on the general case.

Proposition 3.2. If p(z) is a polynomial with only real, nonpositive zeros and positive leading
coefficient (so thap(z) € L-PT N RJz]), then

(3.2) TP (p(x)) >0 forall z>0 and k>2.

Proof. First we prove[(3]2) by induction, in the special case whea 2. If degp = 0 or 1,
thenTQ(z)(@) = 0. Now suppose tha.2) holds (with= 2) for all polynomialsg € £L-P*
of degree at most. Lety(z) := (= + a)g(z), wherea > 0. For notational convenience, set

h(z) == T," (g(z)) = (¢(x))? — g(x)g"(x) and note thak(x) is just L, (g(x)) in Theoren) 2.3
Then some elementary, albeit involved, calculations (which can be readily verified with the aid
of a symbolic program) yield

(33 @ (e(2) = ¢"(x) { (@ + al' T (h(@) + o(2) [12(x) La(g(x)) + A(@)] }
whereL,(g(x)) is given by [2.2) and
A(z) = 8(g'(2))* — 129(x)g'(x)g" (x) + 4g(2)*g" (z).

Sincep(z), ¢"(z) € L-PT, p(z) > 0 andy”(z) > 0 for all z > 0. Also, by Theorem 2|2,
Ly(g(x)) > 0 for all z € R. Now, another calculation shows that

9" (@) (h(x)) = (=)L, (g())

and so?](l)(h( )) > 0 for z > 0, since by the induction assumptldﬁ (9(x)) > 0forz > 0.
Therefore, it remains to show that(x) > 0 for z > 0. Letg(z) = c[[;_,(z + z;), where
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c>0andz; > 0for1 < j < n. Then using logarithmic differentiation and the product rule
we obtain

n

d? 1 2
4)  Ar) =49(x)*— (¢ (2).— ) =49(z)* Y ———= >0 forall .
(3.4) (7) = 4g(2) 002 (g (z) g(x)) g() ; e 0 forall z>0
Thus, the right-hand side .3) is nonnegative foralt 0 and whenceZ;” (o(z)) > 0 if
x > 0. But then continuity considerations show tI‘Y—@(iz)(go(:c)) > 0 for all z > 0. Finally,
since £L-PT is closed under differentiation and sin@fé_f}(go) = 7" (W) for k > n and

j=0,1,2... (see Remark 3|f(a)), we conclude ttat](3.2) holds. O
Recall from the introduction, that if(x) € £-P*, theny(z) can be expressed in the form
(3.5) o(z) = ce’ H (1 + 5) , 0<w < oo,
j=1 J
wherec > 0,0 > 0,z; > 0and)_ 1/z; < co. Now set
o\ N min(N, w) .

Thenpy(z) — ¢(x) asN — oo, uniformly on compact subsets @f. Moreover, the class
L-PT is closed under differentiation, and so the derivativeg(af) can also be expressed in the
form (3.3). Therefore, the following theorem is an immediate consequence of Proppsition 3.2.

Theorem 3.3.1f p(z) € L-P*,thenforj =0,1,2...,
TP (W (z)) >0 forall z>0 and k>2.

In the course of the proof of Propositipn 3.2, we have shown (3.4)) that for polynomials
g(x) € L-PT, the following inequality holds

(3.6) 2(g'(x))* = 3g(2)g'(2)g"(x) + g(2)*¢g"(x) >0 forall z>0.

Next, we employ the foregoing limiting argument (see the paragraph preceding THeofem 3.3)
and the fact that-P* is closed under differentiation, to deduce frgm [3.6) the following corol-
lary.

Corollary 3.4. If

o(x) = %xk c L-PT,

k=0
thenforp =0,1,2... and forallz > 0,

(3.7) 9 (SD(pH)(iU))g — 30 ()o@ ()P () + () (@)2 @) () > 0.

The interest in inequality (3.7) stems, in part, from the fact that:fer 0 it provides a new
necessary condition for a real entire function to belongt8*. Indeed, forz = 0, inequality
(3.7) may be expressed in the form

(3.8) 2741 (7§+1 - 7p7p+2) > Yp (Vp+1Vp+2 = VpVp+3) (p=0,1,2,...).

TheTuran inequalitieSyf,+1 — Y Yp+2 > 0 imply thaty, 17,42 — Y Yp+3 > 0. Thus, ify, > 0
for all p > 0, theny, (Vp+1Vp+2 — Y Yp+3) /(27p+1) IS @ nontrivial positive lower bound for the
Turén expression;, ; — 7p7p+2-
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4. ITERATED TURAN INEQUALITIES

LetI' = {vx}2, be a sequence of real numbers. We define-ttieiterated Turan sequence
of D viayy” = i, k= 0,..., andvy” = (3 )% — 4P k= rr + 1, Thus,
if we write o(z) = 32 v,z /k!, then (" is just 7, (o (z)) evaluated at = 0. Under certain
circumstances, we can show tladit of the higher iterated Turan expressions are positive for a
multiplier sequence. In Secti¢fn 3 we mentioned some simple cases in which we could, in fact,
show that all of the iterated Laguerre inequalities hold. In this section we establish the iterated

Turan inequalities for a large class of interesting multiplier sequences.
Theorem 4.1.Fix ¢ > 1 andd > 0. Consider the seM .. of all sequences of positive numbers
{7}, satisfying

(4.1) i = cYr_1Ykt1 > 0,
for all k. Then
(4.2) (Ve = Wr-1741) = (¢ + ) (Va_y = Yh—27) Vrsr — W Ver2) = 0

for all k£ and all sequences iM.. if and only ifc > 3HVo+d,

Proof. To see necessity, consider the specific sequegce: 1, 74 = 1, v = %, V3 =
47, = 0 for k > 4. This satisfieq (4|1) for any> c. But (4.2) yields

1 1)’ 1 1 1/, ¢ d

Sinceb may be made as large as desired, this is only guaranteed to be nonnegative if
3*—\/2“7‘”, the larger root of? — 3c + 1 — d. The other alternativel, < ¢ < 2=¥2+4¢ does not
occur ford > —1 (and, in particular, forl > 0).

Conversely, assume (4.1) holds with- Y5544 An upper bound for" is 2. From {4.}),
we obtain the lower bound

%(gl) = 713 = Vk—1Vkt1 = (C - 1)%—1%+1 .

Estimating the expression in (4.2), we obtain

(i) = e+ Dy = (e = Dneryen]” = (e 4+ dnioivin
— [ = Be+ 1= dly ot 2 0
by the condition or. O

The setM, is of particular interest. Conditiofi (4.1) forces the numbgr® decrease rather
quickly, leading us to term such sequencapidly decreasing sequencedhey are known
to be multiplier sequences and were first investigated in some detail in [8]. These interesting
sequences are discussed at some length in [3, Section 4]land [4, Section 4].

Corollary 4.2. For a sequence as i.1) with> % ~ 2.62, the corresponding constant
for the sequence of Turan expressioylﬁg = 72 — Yk_17k+1 IS Strictly greater tharr by the
amountd = 2232 |f we then iterate this, forming the sequer{eg” }, the corresponding
constant again increases by more thanAfter a finite number of steps, it will readh(in the

normalized case, = v; = 1) and the sequence of higher Turan expressmé)}gir, for r

fixed and sufficiently large, will be a rapidly decreasing sequence. In particular, if the original
sequence is a rapidly decreasing sequence, the sequence of Turan inequalities is again a rapidly
decreasing sequence and we obtain an infinite sequence of multiplier sequences by iterating this
process.
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Although the iterated Turdn expressions seem to be positive for all multiplier sequences (an
open question in general), it follows from the Theotenj 4.1 that inequflity (4.1)andthl is
not sufficient to achieve this sinckt; contains sequences that fail to satigfy (4.2) doe 0.
But then, the specific sequence used in the proof is not a multiplier sequence if, as it
violates condition[(318) fop = 1.

5. THE THIRD ITERATED TURAN INEQUALITY
In this section we establish the third iterated Turan inequafﬁi/z 0(k=3,4,5...)for
multiplier sequencedy, }2,, of the formy, = k(k — 1)ay, k = 1,2,3 ..., where{o}32, is
anarbitrary multiplier sequence. With the notation adopted in Segtjon 4, we have
(5.1) W= (P =2 k=345,
or equivalently

(62) (7)) =(@ﬁwmf—ﬁ%wmmﬂww0 ,

=0

where

(5.3) o(z) = %xk € L-PT.
k=0
Before embarking on the proof of the third iterated Turan inequality, we briefly discuss a repre-

sentation of the third iterated Turan express‘yé)% = <7;€(3)(g0(x))> in terms of Wronskians
=0
and determinants of Hankel matrices (Propos 5.1). We recall thattherler)Wronskian

(determinantyV (o (z), ¢'(z), . .., o™ 1 (x)), wherep(z) is an entire function, is defined as
p(x) Plx) o P ()
Plx)  ¢®) - 9M(2)

G4 W)@ @) = | 5 5 ,
@) $@) e )

and that the:("" order)Hankel matricesassociated with the sequeneg. }2° ,, are matrices of
the formH," = (Yuss45-2)7,_,, thatis

Yk Ye+1 -+ Vk4n—1
H™ = | Tert Thezeee Thin (n=1,2,3,...,k=0,1,2,...).
Ve+n—1 Vk+n -+  Vk+2n—2

We note that if we sett{” = det H", thenW (o®)(0), o*+1(0), ..., k=D (0)) = A

and forn = 3 the following relation holds

(5.5) (=) AP =7 k=012,

Furthermore, ifp(z) € L-P* is given by [5.8) and ify, > 0, then by Theorem 3|3,

(7;(2)(90(1:)» > 0forz > 0(k = 2,3,4...) and whence, in light 05)A,(€3) <0
=0

fork=0,1, 2?._. .. A straightforward, albeit lengthy, calculation yields the following represen-

tation of the third iterated Turan expressiv;iﬁ).
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Proposition 5.1. Letp(z) := >_,°, %" be an entire function. Then fore R,
(5.6) 7" (¢(x))
= (7;(1)(90(33))) <W (90(1%3)(1.)7 (p(kfz) (z), gp(kfl)(x)’ SD(k) (a:)) Sﬁ(k) (x)Q

%(2)1(90(x))7;(f)1(90<x>>>
20D () 4D (z)

fork =3,4,5.... Inparticular, ifr =0andk =0,1,2..., then
67 = (T@)

whereA™ = det H™ denotes the determinant of the Hankel mafii¥’.

Remark 5.2.

(a) Since the equalities (5.6) arid (5.7) are formal identities, the assumption(ihas an
entire function is not needed.

(b) With the aid of some known identities (see, for examplel, [13, VII, Problem 19]), equa-
tion (5.7) can be recast in the following suggestive form

4 3) 43
0 = (%irg - 7k+2'7k+4) (A§C )%3+3 + A,ﬁ )AECJQ) ,

r=

2
(5.8) 71(323 = (Al(cg-&)J) Vits — AIEB)AIE:?:ZWHWH‘P

Now, suppose thap(z) := >_,2, %a" € L-P*. Then, by virtue Of)%ii)g >0
. 2 .
whenever(Al(fi)J - A,(f’)A,(C‘i)2 >0,k =0,1,2.... However, this inequality is not

valid, in general, as the following example shows. két) := "7 %xk = 2%(z +

1)t Here,720 = = 0,% = 2,7 = 66,7, = 1320,v; = 19800 and~s = 237600.
Then (Af”)) ~ADAD = 9718144,

(c) Lety(x) € L-PT be given by). Sincd,(f)A,(sz2 > 0 (cf. ) and Theore@.s),
) shows thads/,(jz3 > 0 wheneverd!” > 0. However,A\" may be negative, as may
be readily verified using the functign(z) defined in part (b). Examples of this sort are
subtle as they depict a heretofore inexplicable phenomenon. The technique used below
sheds light on this and at the end of this paper we provide a sufficient condition which
guarantees tha/ﬁﬁf) < 0. In connection with the investigations of a conjecture of S.
Karlin, additional examples are considered n [7] and [1]. Furthermore, to highlight the
intricate nature of Karlin’s conjecture, it was pointed out in these papers, in particular,
that A > 0if v, = ai/k!, k= 0,1,2.. ., where{a, }52, is any multiplier sequence.

(d) In the sequel we will prove that if

— k(k—1
o(z) = Z %xk € L-PT,
k=0 '

where {a; }7°, is any multiplier sequence, theff) > 0. Itis not hard to see that

this is equivalent to proving the result only for multiplier sequences that begin with two
zeros. However, the assumption that, }7° , is a multiplier sequence is not necessarily
required to make the inequalities hold. To see this, we consider once again the example

in part (b). Letay = oy = 0 and fork > 2, seta;, = ;7. We claim that{ o, } 32, IS
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not a multiplier sequence. Indeed, consider the fourth Jensen polynomial (defined, for
example, in[[2]) associated with the sequefag};> ., that is,

4
4
ga(z) = Z (k:) apr® = 22%(3 + 22z + 5527).
k=0
Sinceg,(x) has two nonreal zerogoy}7°, is not a multiplier sequence, though our
main theorem will establish the third iteration of the Turan inequalitieg @ ,.

The proof of the main theorem requires that we expl(eg?)(w(x))) in terms of sums

of powers of the logarithmic derivatives gf(x). Accordingly, we proceed to establish the
following preparatory result.

Lemma 5.3. Letp(z) = [[}_, (= + z;), z; >0, j = 1,2,...,n, be a polynomial inC-P*.

For fixedz > 0andj = 1,2,...,n, seta; := —— and let
J

(5.9) A::zn:aj, B::zn:a?, C’::zn:a?, and D::zn:a?.
j=1 j=1 j=1 j=1

Then

(5.10) L G ) N LS S i CO B L BP ) SYe)
p(x) p(x) p(x)
and
W (x)

= A* —6A’B +3B*>+8AC —6D.

p()

Proof. Logarithmic differentiation yields

J=1

o'(x) (P (= 1 |\ 1
0~ (50) <Z+> 2wy
=<Zx+%> T G AR

7=1 7j=1

Continuing in this manner, similar calculations yield

S0///(x) B n 1 3_ n 1 n 1 - 1
o(z) (Zx+x]~> s (;w%—xj) (; (:L“+xj)2> 2 <Z (93+xj)3>

j=1 j=1

= A* - 3AB +2C
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@) (&~ 1) . . AT
o(x) _<jzlx+xj> _6<j21x+x]) (jzl x—i—xj > (J 1m>

i 1 - 1 - 1 - 1
+8 —— ] -6 —
(;x—i-xj) <]Z:; (x+xj)3> (;x—i-xj) <; (x +z;)* )
— A* —6A’B + 3B* + 8AC — 6D.
0O

The next lemma gives an explicit expressioni@) (7(3)( (x ))) , Whereyp(z) is of

the formy(z) = z2y(x). While the verification involves only simple algebralc manipulations,
the expression obtained is sufficiently involved to warrant the use of a computer.

Lemma 5.4. Lety(xz) := Y7, 2" be an entire function. Let

o(z) Z

sothaty, = = 0andy, = k(k — 1)ag_o, fork =2,3,.... Then

1) = (Tw)

where

NlQ

=768 (3¢/(0) = 20(0)¥"(0)) E(0),

z=0

E(x) =729 ()" — 1458 ¢ () ¢ (2)" " (z) + 324 (2)* ¢/ () ¢ (z)?
+ 2169 ()" " ()" + 5da () ' () 1) (2)
=360 ¢(2)* ¢/ () " (x) ¥ () + 100 (2)" ) ()
— 904 (x) " () YW ().
Preliminaries aside, we are now in a position to prove the principal result of this section.

Theorem 5.5.Lete(z) := > po  Skak € L-PT. Let

p() Z

sothaty, = = 0andy, = k(k — 1)ag_o, fork =2,3,.... Then

(5.12) W = (L)) =0

z=0

2

le

Proof. In view of (5.11) of Lemm4, since(x) € L-PT, (Zf”(qﬁ(m))) 20k =

=0
1,2,3...), we only need to establish that(0) > 0. Also, sincey(r) € L-P*, ¢ (x) can
be uniformly approximated, on compact subset&pby polynomials having only real, non-
positive zeros. Therefore, it suffices to prove inequality (5.12) when = [}_, (v + ),
(z; > 0), is a polynomial in-P*. Now if ¢)(0) = 0, thenE(0) = 729 ¢'(0)° > 0 and so
in this case inequality (5.12) is clear. Thus, henceforth we will assume/thiat 0 and, for
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fixed z > 0, considerE(z) as given in Lemma 5[4. We will prove a stronger result, namely,
that for allx > 0,

E(x) _ 729¢/(z)°  1458¢'(2)" ¢ (x)

(W) )’ ()’
L 324 @) " (@)’ | 21697(2)° | 5409/ ()’ v ()
¥(x)’ ()’ ¥(x)’
3609/ (@) (@) ¢ P (@) | 10040 ()" 90w (2) ¥ (2)
o(x)” ()" ()’
> 0.

For fixedz > 0, by Lemmd 5.3 with) in place ofy, we obtain

= = 729A° — 1458A%(A? — B) + 324A%(A* — B)?

+216(A% — B)? + 540A4°(A® — 3AB + 2C) — 360A(A* — B)(A® — 3AB +20)
+100(A® — 3AB +2C)? — 90(A? — B)(A* —6A*B + 3B? + 8AC — 6D)

or

=AS+12A°B—-18A2B%?+54 B>+ 40 A% C
(¥(x))°
+240 ABC +400C? + 540 A*> D — 540 BD

3B 63 B2
= A+ 128 A? -
cis (0 22) o)

+40 A’ C' + 240 A BC' + 400 C* 4 540 (A* — B) D.

Sincex; > 0forj = 1,2...,n, we haved, B,C, D > 0 and all the derivatives af(x) are
positive forz > 0. Therefore we also havel? — B) = ¢"(x)/¢(x) > 0, and thusE(z) > 0
forz > 0. O

Remark 5.6.  (a) We wish to point out that in Theordm B.5 we introduced the factan
order to simplify the ensuing algebra. In the absence of this factor we would have to

calculate—()z) as well as— (see the proof of Lemn@.’&s). Then, as in the proof of

Theore , we would obtain an expression, analogou19, which hasl12 terms
rather than nine. Nevertheless, it seems that the technique developed above, should
yield the desired resulf (5.]12) for an arbitrary multiplier sequence rather than one with
the first two terms equal to zero.

(b) We briefly indicate here how the foregoing technique can be used to derive a sufficient

condition which guarantees thaf" = det H" < 0. Let p(z) := 2*)(x), where
Y(x) = [T (z + z;), z; > 0, is a polynomial inl-P*. Then, the determinant of the

4™ order Hankel matrixo"-2(0))} ., reduces to
AS =W (p(0),¢'(0), ¢"(0), ¢ (0))
= 48 (274'(0)" — 54w< )4 (0)* 9" (0) + 129(0)* 4" (0)”
(5.13) +209(0)° ¢/ (0) ¥ (0) — 5(0)° ¥ (0)).
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Guided by [(5.1B) and the argument used in the proof of Theg¢rem 5.5, we form the
expression

K(x) = 27¢/(x)"  544/(x)* ¢ (x) L 12 " (x)* N 209 (z) P (x)  5¢W(a)
()" W(x)” () V() (@)
and with the aid of Lemmja 5.4, for fixed> 0, we obtain that
K(z) = 3(10 D — B?),
where the quantitie®? = > 7 af andD = PR aj have the same meaning as in
(5.9). Thus, we readily infer that if the the zeros of the polynongiat) € £-P* are
distributed such that0 D < B2 holds atz = 0, thenA((f” < 0. By way of illustration,
considerp(z) = x?Y(z) = 2*(x + a)'?, wherea > 0. Then forz = 0, we find that
10D = 120/a* < 144/a* = B2, and whence by our criteriom”) < 0. Indeed, direct
computation yields thatt|") = —34564%.
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