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1. I NTRODUCTION AND NOTATION

Definition 1.1. A real entire functionϕ(x) :=
∑∞

k=0
γk

k!
xk is said to be in theLaguerre-Pólya

class, writtenϕ(x) ∈ L-P, if ϕ(x) can be expressed in the form

(1.1) ϕ(x) = cxne−αx2+βx

ω∏
k=1

(
1 +

x

xk

)
e
− x

xk , 0 ≤ ω ≤ ∞,

wherec, β, xk ∈ R, α ≥ 0, n is a nonnegative integer and
∑∞

k=1 1/x2
k <∞. If ω = 0, then, by

convention, the product is defined to be 1.
The significance of the Laguerre-Pólya class in the theory of entire functions stems from the

fact that functions in this class,and only these, are the uniform limits, on compact subsets of
C, of polynomials with only real zeros. For various properties and algebraic and transcendental
characterizations of functions in this class we refer the reader to Pólya and Schur [11, p. 100],
[12] or [9, Kapitel II].

If ϕ(x) :=
∑∞

k=0
γk

k!
xk ∈ L-P, then theTurán inequalitiesγ2

k − γk−1γk+1 ≥ 0 and the
Laguerre inequalitiesϕ(k)(x)2−ϕ(x)(k−1)ϕ(k+1)(x) ≥ 0 are known to hold for allk = 1, 2, . . .
and for all realx (see [2] and the references contained therein). In this paper we consider
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2 THOMAS CRAVEN AND GEORGECSORDAS

generalizations of both of these inequalities. For some of these generalizations to hold, we must
restrict our investigation to the following subclass ofL-P.

Definition 1.2. A real entire functionϕ(x) :=
∑∞

k=0
γk

k!
xk in L-P is said to be inL-P+ if

γk ≥ 0 for all k. In particular, this means that all the zeros ofϕ lie in the interval(−∞, 0].

Now if ϕ(x) ∈ L-P+, thenϕ can be expressed in the form

(1.2) ϕ(x) = cxneβx

ω∏
k=1

(
1 +

x

xk

)
, 0 ≤ ω ≤ ∞,

wherec, β ≥ 0, xk > 0, n is a nonnegative integer and
∑∞

k=1
1
xk

< ∞ [9, Section 9]. If
ϕ(x) =

∑∞
k=0

γk

k!
xk ∈ L-P, then, following the usual convention, we call the sequence of

coefficients,{γk}∞k=0, amultiplier sequence.
In Section 2, the Laguerre inequalityϕ′(x)2 − ϕ(x)ϕ′′(x) ≥ 0 is generalized to a system

of inequalitiesLn(ϕ(x)) ≥ 0 for all n = 0, 1, 2, . . . and for allx ∈ R, whereL1(ϕ(x)) =
ϕ′(x)2 − ϕ(x)ϕ′′(x) andϕ(x) ∈ L-P (cf. [10, Theorem 1]). This system of inequalities
characterizes functions inL-P (Theorem 2.2). We show that the (nonlinear) operatorsLn satisfy
a simple recursive relation (Theorem 2.1) and use this fact to give a different proof of a result of
Patrick [10, Theorem 1]. This, together with the converse of Patrick’s theorem (cf. [5, Theorem
2.9]), yields a necessary and sufficient condition for a real entire function (with appropriate
restrictions on the order and type of the entire function) to belong to the Laguerre-Pólya class
(Theorem 2.2).

In Section 3, we consider a different collection of inequalities based on the Laguerre inequal-
ity, namely an iterated form of them. Our original proof of the second iterated inequalities for
functions inL-P+ [2, Theorem 2.13] was based on the study of certain polynomial invariants.
In Section 3, we give a shorter and a conceptually simpler proof of these inequalities (Propo-
sition 3.2 and Theorem 3.3). Moreover, the proof of Proposition 3.2 leads to new necessary
conditions for entire functions to belong toL-P+ (Corollary 3.4). Evaluating these atx = 0
yields the classical Turán inequalities and iterated forms of them, considered in Section 4. In
Section 4, we show that for multiplier sequences which decay sufficiently rapidlyall the higher
iterated Turán inequalities hold (Theorem 4.1). Our main result (Theorem 5.5) asserts that the
third iterated Turán inequalities are valid for all functions of the formϕ(x) = x2ψ(x), where
ψ(x) ∈ L-P+. An examination of the proof of Theorem 5.5 (see also Lemma 5.4) shows that
the restriction thatϕ(x) has a double zero at the origin is merely a ploy to render the, otherwise
very lengthy and involved, computations tractable.

2. CHARACTERIZING L-P VIA EXTENDED L AGUERRE I NEQUALITIES

Let ϕ(x) denote a real entire function; that is, an entire function with only real Taylor co-
efficients. Following Patrick [10], we define implicitly the action of the (nonlinear) operators
{Ln}∞n=0, takingϕ(x) toLn(ϕ(x)), by the equation

(2.1) |ϕ(x+ iy)|2 = ϕ(x+ iy)ϕ(x− iy) =
∞∑

n=0

Ln(ϕ(x))y2n, (x, y ∈ R) .

In the sequel, it will become clear thatLn(ϕ(x)) is also a real entire function (cf. Remark 2.4).
In [10], Patrick shows that ifϕ(x) ∈ L-P, thenLn(ϕ(x)) ≥ 0 for all n = 0, 1, 2, . . . and for
all x ∈ R. The novel aspect of our approach to these inequalities is based on the remarkable
fact that the operatorsLn satisfy a simple recursive relation (Theorem 2.1). By virtue of this
recursion relation, we obtain a short proof of Patrick’s theorem. This, when combined with the
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ITERATED LAGUERRE AND TURÁN INEQUALITIES 3

known converse result [5, Theorem 2.9], yields a complete characterization of functions inL-P
(Theorem 2.2).

We remark that generalizations of the operators defined in (2.1) are given by Dilcher and Sto-
larsky in [6]. These authors study the distribution of zeros ofL

(m)
n (ϕ(x)) for their generalized

operatorsL(m)
n and certain functionsϕ(x).

Theorem 2.1.Letϕ(x) be any real entire function. Then the operatorsLn satisfy the following:

(1) Ln((x+ a)ϕ(x)) = (x+ a)2Ln(ϕ(x)) + Ln−1(ϕ(x)), for a ∈ R andn = 1, 2, . . . ;
(2) L0(ϕ) = ϕ2;
(3) Ln(c) = 0 for any constantc andn ≥ 1.

Proof. Parts(2) and(3) are clear from the definition. To check(1), we compute as follows:

|(x+ a+ iy)ϕ(x+ iy)|2 = ((x+ a)2 + y2)
∞∑

n=0

Ln(ϕ(x))y2n

= (x+ a)2

∞∑
n=0

Ln(ϕ(x))y2n +
∞∑

n=0

Ln(ϕ(x))y2n+2

= (x+ a)2

∞∑
n=0

Ln(ϕ(x))y2n +
∞∑

n=1

Ln−1(ϕ(x))y2n

= (x+ a)2L0(ϕ(x)) +
∞∑

n=1

[(x+ a)2Ln(ϕ(x)) + Ln−1(ϕ(x))]y2n,

from which(1) follows. �

Using the recursion of Theorem 2.1, we obtain the following characterization of functions in
L-P.

Theorem 2.2.Letϕ(x) 6≡ 0 be a real entire function of the forme−αx2
ϕ1(x), whereα ≥ 0 and

ϕ1(x) has genus 0 or 1. Thenϕ(x) ∈ L-P if and only ifLn(ϕ) ≥ 0 for all n = 0, 1, 2, . . . .

Proof. First assume that allLn(ϕ) ≥ 0. If ϕ /∈ L-P, thenϕ has a nonreal zeroz0 = x0 + iy0

with y0 6= 0. Hence

0 = |ϕ(z0)|2 =
∞∑

n=0

Ln(ϕ(x0))y
2n
0 .

Since all terms in the sum are nonnegative andy0 6= 0, we must haveLn(ϕ(x0)) = 0 for all n.
But this gives|ϕ(x0 + iy)|2 =

∑∞
n=0 Ln(ϕ(x0))y

2n = 0 for any choice ofy ∈ R, whenceϕ
itself must be identically zero.

Conversely, assume thatϕ ∈ L-P. Sinceϕ can be uniformly approximated on compact sets
by polynomials with only real zeros, it will suffice to prove thatLn(ϕ) ≥ 0 for polynomials
ϕ. For this we use induction on the degree ofϕ. From Theorem 2.1(2) and(3), we see that
Ln(ϕ) ≥ 0 for anyn if ϕ has degree0. If the degree ofϕ is greater than zero, we can write
ϕ(x) = (x + a)g(x), wherea ∈ R andg(x) is a polynomial. By the induction hypothesis,
Ln(g(x)) ≥ 0 for all n ≥ 0 and allx ∈ R. Hence, Theorem 2.1(1) gives the desired conclusion
for ϕ. �

Next we show that the explicit form ofLn(ϕ) given in [10] can also be obtained from Theo-
rem 2.1.
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4 THOMAS CRAVEN AND GEORGECSORDAS

Theorem 2.3.For anyϕ ∈ L-P, operatorsLn(ϕ) satisfying the recursion and initial conditions
of Theorem 2.1 are uniquely determined and are given by

(2.2) Ln(ϕ(x)) =
2n∑

j=0

(−1)j+n

(2n)!

(
2n

j

)
ϕ(j)(x)ϕ(2n−j)(x) .

Proof. As before, it will suffice to prove the result for polynomials inL-P. It is clear that the
recursion formula of Theorem 2.1, together with the initial conditions given there, uniquely
determine the value ofLn on any polynomial with only real zeros. Thus it will suffice to show
that the formula given in (2.2) satisfies the conditions of Theorem 2.1. We do a double induction,
beginning with an induction onn.

If n = 0, thenL0(ϕ) = ϕ2 by Theorem 2.1 and this agrees with (2.2). Assume thatn > 0
and that (2.2) holds forLn−1. Now we begin an induction on the degree ofϕ.

If ϕ is a constant, thenLn(ϕ) = 0 by Theorem 2.1, which agrees with (2.2). Assume the
formula holds for polynomials of degree less thandegϕ. Then we can writeϕ(x) = (x+a)g(x),
wherea ∈ R andLn−1(g) andLn(g) are given by (2.2). The conclusion now follows from a
computation using Theorem 2.1(1). Indeed,

Ln(ϕ(x)) = Ln((x+ a)g(x))

= (x+ a)2Ln(g(x)) + Ln−1(g(x))

= (x+ a)2

2n∑
j=0

(−1)j+n

(2n)!

(
2n

j

)
g(j)(x)g(2n−j)(x)

+
2n−2∑
j=0

(−1)j+n−1

(2n− 2)!

(
2n− 2

j

)
g(j)(x)g(2n−2−j)(x).

Also, using Leibniz’s formula for higher derivatives of a product,

2n∑
j=0

(−1)j+n

(2n)!

(
2n

j

)
ϕ(j)(x)ϕ(2n−j)(x)

=
2n∑

j=0

(−1)j+n

(2n)!

(
2n

j

)[
j(2n− j)g(j−1)g(2n−1−j) + (x+ a)jg(j−1)g(2n−j)

+ (x+ a)(2n− j)g(j)g(2n−1−j) + (x+ a)2g(j)g(2n−j)
]

= (x+ a)2

2n∑
j=0

(−1)j+n

(2n)!

(
2n

j

)
g(j)(x)g(2n−j)(x)

+
2n−2∑
j=0

(−1)j+n−1

(2n− 2)!

(
2n− 2

j

)
g(j)(x)g(2n−2−j)(x),

because the coefficient of(x+ a) is shown to be zero by

2n∑
j=0

(−1)j+n

(2n)!

(
2n

j

)[
jg(j−1)g(2n−j) + (2n− j)g(j)g(2n−1−j)

]
=

(−1)n

(2n)!

[
2n∑

j=1

(−1)j

(
2n

j

)
jg(j−1)g(2n−j) +

2n−1∑
j=0

(−1)j

(
2n

j

)
(2n− j)g(j)g(2n−j−1)

]
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ITERATED LAGUERRE AND TURÁN INEQUALITIES 5

=
(−1)n

(2n)!

[
−

2n−1∑
j=0

(−1)j

(
2n

j + 1

)
(j + 1)g(j)g(2n−j−1)

+
2n−1∑
j=0

(−1)j

(
2n

j

)
(2n− j)g(j)g(2n−j−1)

]
= 0

since
(

2n
j+1

)
(j + 1) =

(
2n
j

)
(2n− j). �

The main emphasis here has been that the result of Theorem 2.2 depends only on the recursive
condition of Theorem 2.1, and this seems to be the easiest way to prove Theorem 2.2. However,
the operatorsLn(ϕ) can be explicitly computed more easily than from the recursive condition
as was done in Theorem 2.3, as well as in greater generality.

Remark 2.4. For any real entire functionϕ, the operatorsLn(ϕ) defined by equation (2.1) are
given by the formula

Ln(ϕ(x)) =
2n∑

j=0

(−1)j+n

(2n)!

(
2n

j

)
ϕ(j)(x)ϕ(2n−j)(x).

Proof. By Taylor’s theorem, for each fixedx ∈ R,

h(y) := |ϕ(x+ iy)|2 = ϕ(x+ iy)ϕ(x− iy) =
∞∑

n=0

h(2n)(0)

(2n)!
y2n,

where we have used the fact thath(y) is an even function (ofy). Let Dy = d/dy denote
differentiation with respect toy. Then by Leibniz’s formula, for higher derivatives of a product,
we have

h(2n)(0) =
2n∑

k=0

(
2n

k

)(
Dk

yϕ(x+ iy)
)

y=0

(
D2n−k

y ϕ(x− iy)
)

y=0

=
2n∑

k=0

(
2n

k

)
(−1)n+kϕ(k)(x)ϕ(2n−k)(x)

= (2n)!Ln(ϕ(x)),

by the uniqueness of the Taylor coefficients. �

3. I TERATED L AGUERRE I NEQUALITIES

Definition 3.1. For any real entire functionϕ(x), set

T (1)
k (ϕ(x)) := (ϕ(k)(x))2 − ϕ(k−1)(x)ϕ(k+1)(x) if k ≥ 1,

and forn ≥ 2, set

T (n)
k (ϕ(x)) := (T (n−1)

k (ϕ(x)))2 − T (n−1)
k−1 (ϕ(x)) T (n−1)

k+1 (ϕ(x)) if k ≥ n ≥ 2.

Remark 3.1. (a) Note that with the notation above, we haveT (n)
k+j(ϕ) = T (n)

k (ϕ(j)) for
k ≥ n andj = 0, 1, 2 . . . .

(b) The authors’ investigations of functions in the Laguerre-Pólya class ([2], [3]) have led
to the following problem.
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6 THOMAS CRAVEN AND GEORGECSORDAS

Open Problem If ϕ(x) ∈ L-P+, are the iterated Laguerre inequalities valid for all
x ≥ 0? That is, is it true that

(3.1) T (n)
k (ϕ(x)) ≥ 0 for all x ≥ 0 and k ≥ n?

(c) If we assume only thatϕ(x) ∈ L-P, then the inequalityT (n)
k (ϕ(x)) ≥ 0, x ≥ 0, need

not hold in general, as the following example shows. Consider, for example,ϕ(x) =

(x − 2)(x + 1)2 ∈ L-P. ThenT (2)
2 (ϕ(x)) = 216x(−2 + 3x + x3) and so we see that

T (2)
2 (ϕ(x)) is negative for all sufficiently small positive values ofx.

(d) There are, of course, certain easy situations for which the iterated Laguerre inequalities
can be shown to always hold. For example, ifϕ(x) = (x + a)ex, a ≥ 0 or ϕ(x) =
(x+ a)(x+ b)ex, a, b ≥ 0, this is true. Since the derivative of such a function again has
the same form, the remarks above indicate that it suffices to show thatT (k)

k (ϕ(x)) ≥ 0
for k = 1, 2, . . . and allx ≥ 0. For the quadratic case, we obtain

T (k)
k (ϕ(x))

=

 22k−2e2
kx ((a+ x)2 + (b+ x)2 + 2(k − 1)(2x+ a+ b+ k2 − k)) , for k odd

22k−1e2
kx ((x+ a)(x+ b) + k(2x+ a+ b+ k − 1)) , for k even

and each expression is clearly nonegative for all realx.
(e) A particularly intriguing open problem is the case ofϕ(x) = xm in (3.1). Special

cases, such as the iterated Turán inequalities discussed in the next section, can be easily
established (i.e.T (n)

n (xn) = (n!)2n
), but the general case ofT (n)

n (xn+k), k = 0, 1, 2, . . . ,
seems surprisingly difficult.

In [2, Theorem 2.13] it is shown that (3.1) is true whenn = 2; that is the double Laguerre
inequalities are valid. Here we present a somewhat different and shorter proof (which still
depends on Theorems 2.2 and 2.3) in the hope that it will shed light on the general case.
Proposition 3.2. If ϕ(x) is a polynomial with only real, nonpositive zeros and positive leading
coefficient (so thatϕ(x) ∈ L-P+ ∩ R[x]), then

(3.2) T (2)
k (ϕ(x)) ≥ 0 for all x ≥ 0 and k ≥ 2.

Proof. First we prove (3.2) by induction, in the special case whenk = 2. If degϕ = 0 or 1,
thenT (2)

2 (ϕ) = 0. Now suppose that (3.2) holds (withk = 2) for all polynomialsg ∈ L-P+

of degree at mostn. Let ϕ(x) := (x + a)g(x), wherea ≥ 0. For notational convenience, set
h(x) := T (1)

1 (g(x)) = (g′(x))2− g(x)g′′(x) and note thath(x) is justL1(g(x)) in Theorem 2.3.
Then some elementary, albeit involved, calculations (which can be readily verified with the aid
of a symbolic program) yield

(3.3) ϕ(x)T (2)
2 (ϕ(x)) = ϕ′′(x)

{
(x+ a)4T (1)

1 (h(x)) + ϕ(x) [12ϕ(x)L2(g(x)) + A(x)]
}
,

whereL2(g(x)) is given by (2.2) and

A(x) = 8(g′(x))3 − 12g(x)g′(x)g′′(x) + 4g(x)2g′′′(x).

Sinceϕ(x), ϕ′′(x) ∈ L-P+, ϕ(x) ≥ 0 andϕ′′(x) ≥ 0 for all x ≥ 0. Also, by Theorem 2.2,
L2(g(x)) ≥ 0 for all x ∈ R. Now, another calculation shows that

g′′(x)T (1)
1 (h(x)) = g(x)T (2)

2 (g(x))

and soT (1)
1 (h(x)) ≥ 0 for x ≥ 0, since by the induction assumptionT (2)

2 (g(x)) ≥ 0 for x ≥ 0.
Therefore, it remains to show thatA(x) ≥ 0 for x ≥ 0. Let g(x) = c

∏n
j=1(x + xj), where
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ITERATED LAGUERRE AND TURÁN INEQUALITIES 7

c > 0 andxj ≥ 0 for 1 ≤ j ≤ n. Then using logarithmic differentiation and the product rule
we obtain

(3.4) A(x) = 4g(x)3 d
2

dx2

(
g′(x).

1

g(x)

)
= 4g(x)3

n∑
j=1

2

(x+ xj)3
≥ 0 for all x > 0.

Thus, the right-hand side of (3.3) is nonnegative for allx ≥ 0 and whenceT (2)
2 (ϕ(x)) ≥ 0 if

x > 0. But then continuity considerations show thatT (2)
2 (ϕ(x)) ≥ 0 for all x ≥ 0. Finally,

sinceL-P+ is closed under differentiation and sinceT (n)
k+j(ϕ) = T (n)

k (ϕ(j)) for k ≥ n and
j = 0, 1, 2 . . . (see Remark 3.1(a)), we conclude that (3.2) holds. �

Recall from the introduction, that ifϕ(x) ∈ L-P+, thenϕ(x) can be expressed in the form

(3.5) ϕ(x) = ceσx

ω∏
j=1

(
1 +

x

xj

)
, 0 ≤ ω ≤ ∞,

wherec ≥ 0, σ ≥ 0, xj > 0 and
∑

1/xj <∞. Now set

ϕN(x) = c
(
1 +

σx

N

)N
min(N, ω)∏

j=1

(
1 +

x

xj

)
.

ThenϕN(x) → ϕ(x) asN → ∞, uniformly on compact subsets ofC. Moreover, the class
L-P+ is closed under differentiation, and so the derivatives ofϕ(x) can also be expressed in the
form (3.5). Therefore, the following theorem is an immediate consequence of Proposition 3.2.

Theorem 3.3. If ϕ(x) ∈ L-P+, then forj = 0, 1, 2 . . . ,

T (2)
k (ϕ(j)(x)) ≥ 0 for all x ≥ 0 and k ≥ 2.

In the course of the proof of Proposition 3.2, we have shown (see (3.4)) that for polynomials
g(x) ∈ L-P+, the following inequality holds

(3.6) 2(g′(x))3 − 3g(x)g′(x)g′′(x) + g(x)2g′′′(x) ≥ 0 for all x ≥ 0.

Next, we employ the foregoing limiting argument (see the paragraph preceding Theorem 3.3)
and the fact thatL-P+ is closed under differentiation, to deduce from (3.6) the following corol-
lary.

Corollary 3.4. If

ϕ(x) =
∞∑

k=0

γk

k!
xk ∈ L-P+,

then forp = 0, 1, 2 . . . and for allx ≥ 0,

(3.7) 2
(
ϕ(p+1)(x)

)3 − 3ϕ(p)(x)ϕ(p+1)(x)ϕ(p+2)(x) +
(
ϕ(p)(x)

)2
ϕ(p+3)(x) ≥ 0.

The interest in inequality (3.7) stems, in part, from the fact that forx = 0 it provides a new
necessary condition for a real entire function to belong toL-P+. Indeed, forx = 0, inequality
(3.7) may be expressed in the form

(3.8) 2γp+1

(
γ2

p+1 − γpγp+2

)
≥ γp (γp+1γp+2 − γpγp+3) (p = 0, 1, 2, . . . ).

TheTurán inequalitiesγ2
p+1 − γpγp+2 ≥ 0 imply thatγp+1γp+2 − γpγp+3 ≥ 0. Thus, ifγp > 0

for all p ≥ 0, thenγp (γp+1γp+2 − γpγp+3) /(2γp+1) is a nontrivial positive lower bound for the
Turán expressionγ2

p+1 − γpγp+2.
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8 THOMAS CRAVEN AND GEORGECSORDAS

4. I TERATED TURÁN I NEQUALITIES

Let Γ = {γk}∞k=0 be a sequence of real numbers. We define ther-th iterated Turán sequence
of Γ via γ(0)

k = γk, k = 0, . . . , andγ(r)
k = (γ

(r−1)
k )2 − γ

(r−1)
k−1 γ

(r−1)
k+1 , k = r, r + 1, . . . . Thus,

if we write ϕ(x) =
∑
γkx

k/k!, thenγ(r)
k is justT (r)

k (ϕ(x)) evaluated atx = 0. Under certain
circumstances, we can show thatall of the higher iterated Turán expressions are positive for a
multiplier sequence. In Section 3 we mentioned some simple cases in which we could, in fact,
show that all of the iterated Laguerre inequalities hold. In this section we establish the iterated
Turán inequalities for a large class of interesting multiplier sequences.
Theorem 4.1. Fix c ≥ 1 andd ≥ 0. Consider the setMc of all sequences of positive numbers
{γk}∞k=0 satisfying

(4.1) γ2
k − c γk−1γk+1 ≥ 0,

for all k. Then

(4.2) (γ2
k − γk−1γk+1)

2 − (c+ d)(γ2
k−1 − γk−2γk)(γ

2
k+1 − γkγk+2) ≥ 0

for all k and all sequences inMc if and only ifc ≥ 3+
√

5+4d
2

.

Proof. To see necessity, consider the specific sequenceγ0 = 1, γ1 = 1, γ2 = 1
b
, γ3 =

1
cb2
, γk = 0 for k ≥ 4. This satisfies (4.1) for anyb ≥ c. But (4.2) yields(

1

b2
− 1

cb2

)2

− (c+ d)

(
1− 1

b

)(
1

c2b4

)
=

1

c2b4

(
c2 − 3c+ 1 +

c

b
− d+

d

b

)
.

Sinceb may be made as large as desired, this is only guaranteed to be nonnegative ifc ≥
3+
√

5+4d
2

, the larger root ofc2 − 3c + 1 − d. The other alternative,1 ≤ c ≤ 3−
√

5+4d
2

does not
occur ford > −1 (and, in particular, ford ≥ 0).

Conversely, assume (4.1) holds withc ≥ 3+
√

5+4d
2

. An upper bound forγ(1)
k is γ2

k. From (4.1),
we obtain the lower bound

γ
(1)
k = γ2

k − γk−1γk+1 ≥ (c− 1)γk−1γk+1 .

Estimating the expression in (4.2), we obtain

(γ
(1)
k )2 − (c+ d)γ

(1)
k−1γ

(1)
k+1 ≥ [(c− 1)γk−1γk+1]

2 − (c+ d)γ2
k−1γ

2
k+1

= [c2 − 3c+ 1− d]γ2
k−1γ

2
k+1 ≥ 0

by the condition onc. �

The setM4 is of particular interest. Condition (4.1) forces the numbersγk to decrease rather
quickly, leading us to term such sequencesrapidly decreasing sequences. They are known
to be multiplier sequences and were first investigated in some detail in [8]. These interesting
sequences are discussed at some length in [3, Section 4] and [4, Section 4].

Corollary 4.2. For a sequence as in (4.1) withc > 3+
√

5
2

≈ 2.62, the corresponding constant

for the sequence of Turán expressionsγ
(1)
k = γ2

k − γk−1γk+1 is strictly greater thanc by the
amountd = 2c2−3c+2

2
. If we then iterate this, forming the sequence{γ(2)

k }, the corresponding
constant again increases by more thand. After a finite number of steps, it will reach4 (in the
normalized caseγ0 = γ1 = 1) and the sequence of higher Turán expressions{γ(r)

k }∞k=r, for r
fixed and sufficiently large, will be a rapidly decreasing sequence. In particular, if the original
sequence is a rapidly decreasing sequence, the sequence of Turán inequalities is again a rapidly
decreasing sequence and we obtain an infinite sequence of multiplier sequences by iterating this
process.
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Although the iterated Turán expressions seem to be positive for all multiplier sequences (an
open question in general), it follows from the Theorem 4.1 that inequality (4.1) withc = 1 is
not sufficient to achieve this sinceM1 contains sequences that fail to satisfy (4.2) ford = 0.
But then, the specific sequence used in the proof is not a multiplier sequence ifc = 1, as it
violates condition (3.8) forp = 1.

5. THE THIRD I TERATED TURÁN I NEQUALITY

In this section we establish the third iterated Turán inequalityγ
(3)
k ≥ 0 (k = 3, 4, 5 . . . ) for

multiplier sequences,{γk}∞k=0, of the formγk = k(k − 1)αk, k = 1, 2, 3 . . . , where{αk}∞k=0 is
anarbitrary multiplier sequence. With the notation adopted in Section 4, we have

(5.1) γ
(3)
k = (γ

(2)
k )2 − γ

(2)
k−1γ

(2)
k+1, k = 3, 4, 5, . . . ,

or equivalently

(5.2)
(
T (3)

k (ϕ(x))
)

x=0
=

((
T (2)

k (ϕ(x)
)2

− T (2)
k−1(ϕ(x))T (2)

k+1(ϕ(x))

)
x=0

,

k = 3, 4, 5, . . . ,

where

(5.3) ϕ(x) :=
∞∑

k=0

γk

k!
xk ∈ L-P+.

Before embarking on the proof of the third iterated Turán inequality, we briefly discuss a repre-

sentation of the third iterated Turán expressionγ
(3)
k =

(
T (3)

k (ϕ(x))
)

x=0
in terms of Wronskians

and determinants of Hankel matrices (Proposition 5.1). We recall that the (nth order)Wronskian
(determinant)W (ϕ(x), ϕ′(x), . . . , ϕ(n−1)(x)), whereϕ(x) is an entire function, is defined as

(5.4) W (ϕ(x), ϕ′(x), . . . , ϕ(n−1)(x)) :=

∣∣∣∣∣∣∣∣∣
ϕ(x) ϕ′(x) · · · ϕ(n−1)(x)
ϕ′(x) ϕ(2)(x) · · · ϕ(n)(x)
...

...
...

ϕ(n−1)(x) ϕ(n)(x) · · · ϕ(2n−2)(x)

∣∣∣∣∣∣∣∣∣ ,
and that the (nth order)Hankel matrices, associated with the sequence{γk}∞k=0, are matrices of
the formH(n)

k = (γk+i+j−2)
n
i,j=1, that is

H
(n)
k =


γk γk+1 . . . γk+n−1

γk+1 γk+2 . . . γk+n+1

. . .
γk+n−1 γk+n . . . γk+2n−2

 (n = 1, 2, 3, . . . , k = 0, 1, 2, . . . ).

We note that if we setA(n)
k = detH

(n)
k , thenW (ϕ(k)(0), ϕ(k+1)(0), . . . , ϕ(k+n−1)(0)) = A

(n)
k

and forn = 3 the following relation holds

(5.5) (−γk+2)A
(3)
k = γ

(2)
k+2 k = 0, 1, 2 . . . .

Furthermore, ifϕ(x) ∈ L-P+ is given by (5.3) and ifγk > 0, then by Theorem 3.3,(
T (2)

k (ϕ(x))
)

x=0
≥ 0 for x ≥ 0 (k = 2, 3, 4 . . . ) and whence, in light of (5.5),A(3)

k ≤ 0

for k = 0, 1, 2, . . . . A straightforward, albeit lengthy, calculation yields the following represen-
tation of the third iterated Turán expressionγ(3)

k .
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10 THOMAS CRAVEN AND GEORGECSORDAS

Proposition 5.1. Letϕ(x) :=
∑∞

k=0
γk

k!
xk be an entire function. Then forx ∈ R,

(5.6) T (3)
k (ϕ(x))

=
(
T (1)

k (ϕ(x))
)(

W
(
ϕ(k−3)(x), ϕ(k−2)(x), ϕ(k−1)(x), ϕ(k)(x)

)
ϕ(k)(x)2

+
T (2)

k−1(ϕ(x))T (2)
k+1(ϕ(x))

ϕ(k−1)(x)ϕ(k+1)(x)

)
for k = 3, 4, 5 . . . . In particular, if x = 0 andk = 0, 1, 2 . . . , then

(5.7) γ
(3)
k+3 =

(
T (3)

k+3(ϕ(x))
)

x=0
= (γ2

k+3 − γk+2γk+4)
(
A

(4)
k γ2

k+3 + A
(3)
k A

(3)
k+2

)
,

whereA(n)
k = detH

(n)
k denotes the determinant of the Hankel matrixH

(n)
k .

Remark 5.2.

(a) Since the equalities (5.6) and (5.7) are formal identities, the assumption thatϕ(x) is an
entire function is not needed.

(b) With the aid of some known identities (see, for example, [13, VII, Problem 19]), equa-
tion (5.7) can be recast in the following suggestive form

(5.8) γ
(3)
k+3 =

(
A

(3)
k+1

)2

γ2
k+3 − A

(3)
k A

(3)
k+2γk+2γk+4.

Now, suppose thatϕ(x) :=
∑∞

k=0
γk

k!
xk ∈ L-P+. Then, by virtue of (5.8),γ(3)

k+3 ≥ 0

whenever
(
A

(3)
k+1

)2

− A
(3)
k A

(3)
k+2 ≥ 0, k = 0, 1, 2 . . . . However, this inequality is not

valid, in general, as the following example shows. Letϕ(x) :=
∑∞

k=0
γk

k!
xk = x2(x +

1)11. Here,γ0 = γ1 = 0, γ2 = 2, γ3 = 66, γ4 = 1320, γ5 = 19800 andγ6 = 237600.

Then
(
A

(3)
1

)2

− A
(3)
0 A

(3)
2 = −2718144.

(c) Letϕ(x) ∈ L-P+ be given by (5.3). SinceA(3)
k A

(3)
k+2 ≥ 0 (cf. (5.5) and Theorem 3.3),

(5.7) shows thatγ(3)
k+3 ≥ 0 wheneverA(4)

k ≥ 0. However,A(4)
k may be negative, as may

be readily verified using the functionϕ(x) defined in part (b). Examples of this sort are
subtle as they depict a heretofore inexplicable phenomenon. The technique used below
sheds light on this and at the end of this paper we provide a sufficient condition which
guarantees thatA(4)

k < 0. In connection with the investigations of a conjecture of S.
Karlin, additional examples are considered in [7] and [1]. Furthermore, to highlight the
intricate nature of Karlin’s conjecture, it was pointed out in these papers, in particular,
thatA(4)

k ≥ 0 if γk = αk/k!, k = 0, 1, 2 . . . , where{αk}∞k=0 is any multiplier sequence.
(d) In the sequel we will prove that if

ϕ(x) :=
∞∑

k=0

k(k − 1)αk

k!
xk ∈ L-P+,

where{αk}∞k=0 is any multiplier sequence, thenγ(3)
3 ≥ 0. It is not hard to see that

this is equivalent to proving the result only for multiplier sequences that begin with two
zeros. However, the assumption that{αk}∞k=0 is a multiplier sequence is not necessarily
required to make the inequalities hold. To see this, we consider once again the example
in part (b). Letα0 = α1 = 0 and fork ≥ 2, setαk = γk

k(k−1)
. We claim that{αk}∞k=0 is
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not a multiplier sequence. Indeed, consider the fourth Jensen polynomial (defined, for
example, in [2]) associated with the sequence{αk}∞k=0, that is,

g4(x) =
4∑

k=0

(
4

k

)
αkx

k = 2x2(3 + 22x+ 55x2).

Sinceg4(x) has two nonreal zeros,{αk}∞k=0 is not a multiplier sequence, though our
main theorem will establish the third iteration of the Turán inequalities for{γk}∞k=0.

The proof of the main theorem requires that we express
(
T (3)

3 (ϕ(x))
)

x=0
in terms of sums

of powers of the logarithmic derivatives ofϕ(x). Accordingly, we proceed to establish the
following preparatory result.

Lemma 5.3. Letϕ(x) =
∏n

j=1(x + xj), xj > 0, j = 1, 2, . . . , n, be a polynomial inL-P+.
For fixedx ≥ 0 andj = 1, 2, . . . , n, setaj := 1

x+xj
and let

(5.9) A :=
n∑

j=1

aj, B :=
n∑

j=1

a2
j , C :=

n∑
j=1

a3
j , and D :=

n∑
j=1

a4
j .

Then

(5.10)
ϕ′(x)

ϕ(x)
= A,

ϕ′′(x)

ϕ(x)
= A2 −B,

ϕ′′′(x)

ϕ(x)
= A3 − 3AB + 2C

and

ϕ(4)(x)

ϕ(x)
= A4 − 6A2B + 3B2 + 8AC − 6D.

Proof. Logarithmic differentiation yields

ϕ′(x)

ϕ(x)
=

n∑
j=1

1

x+ xj

and ϕ′′(x) = ϕ′(x)

(
n∑

j=1

1

x+ xj

)
− ϕ(x)

n∑
j=1

1

(x+ xj)2
.

Hence,

ϕ′′(x)

ϕ(x)
=

(
ϕ′(x)

ϕ(x)

)( n∑
j=1

1

x+ xj

)
−

n∑
j=1

1

(x+ xj)2

=

(
n∑

j=1

1

x+ xj

)2

−
n∑

j=1

1

(x+ xj)2
= A2 −B.

Continuing in this manner, similar calculations yield

ϕ′′′(x)

ϕ(x)
=

(
n∑

j=1

1

x+ xj

)3

− 3

(
n∑

j=1

1

x+ xj

)(
n∑

j=1

1

(x+ xj)2

)
+ 2

(
n∑

j=1

1

(x+ xj)3

)
= A3 − 3AB + 2C
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12 THOMAS CRAVEN AND GEORGECSORDAS

and

ϕ(4)(x)

ϕ(x)
=

(
n∑

j=1

1

x+ xj

)4

− 6

(
n∑

j=1

1

x+ xj

)2( n∑
j=1

1

(x+ xj)2

)
+ 3

(
n∑

j=1

1

(x+ xj)2

)2

+ 8

(
n∑

j=1

1

x+ xj

)(
n∑

j=1

1

(x+ xj)3

)
− 6

(
n∑

j=1

1

x+ xj

)(
n∑

j=1

1

(x+ xj)4

)
= A4 − 6A2B + 3B2 + 8AC − 6D.

�

The next lemma gives an explicit expression forγ
(3)
3 =

(
T (3)

3 (ϕ(x))
)

x=0
, whereϕ(x) is of

the formϕ(x) = x2ψ(x). While the verification involves only simple algebraic manipulations,
the expression obtained is sufficiently involved to warrant the use of a computer.

Lemma 5.4. Letψ(x) :=
∑∞

k=0
αk

k!
xk be an entire function. Let

ϕ(x) = x2ψ(x) =
∞∑

k=0

γk

k!
xk,

so thatγ0 = γ1 = 0 andγk = k(k − 1)αk−2, for k = 2, 3, . . . . Then

(5.11) γ
(3)
3 =

(
T (3)

3 (ϕ(x))
)

x=0
= 768

(
3ψ′(0)

2 − 2ψ(0)ψ′′(0)
)
E(0),

where

E(x) := 729ψ′(x)
6 − 1458ψ(x)ψ′(x)

4
ψ′′(x) + 324ψ(x)2 ψ′(x)

2
ψ′′(x)

2

+ 216ψ(x)3 ψ′′(x)
3
+ 54xψ(x)2 ψ′(x)

3
ψ(3)(x)

− 360ψ(x)3 ψ′(x)ψ′′(x)ψ(3)(x) + 100ψ(x)4 ψ(3)(x)
2

− 90ψ(x)4 ψ′′(x)ψ(4)(x).

Preliminaries aside, we are now in a position to prove the principal result of this section.

Theorem 5.5.Letψ(x) :=
∑∞

k=0
αk

k!
xk ∈ L-P+. Let

ϕ(x) = x2ψ(x) =
∞∑

k=0

γk

k!
xk,

so thatγ0 = γ1 = 0 andγk = k(k − 1)αk−2, for k = 2, 3, . . . . Then

(5.12) γ
(3)
3 =

(
T (3)

3 (ϕ(x))
)

x=0
≥ 0.

Proof. In view of (5.11) of Lemma 5.4, sinceψ(x) ∈ L-P+,
(
T (1)

k (ψ(x))
)

x=0
≥ 0 (k =

1, 2, 3 . . . ), we only need to establish thatE(0) ≥ 0. Also, sinceψ(x) ∈ L-P+, ψ(x) can
be uniformly approximated, on compact subsets ofC, by polynomials having only real, non-
positive zeros. Therefore, it suffices to prove inequality (5.12) whenψ(x) =

∏n
j=1(x + xj),

(xj ≥ 0), is a polynomial inL-P+. Now if ψ(0) = 0, thenE(0) = 729ψ′(0)6 ≥ 0 and so
in this case inequality (5.12) is clear. Thus, henceforth we will assume thatψ(0) 6= 0 and, for
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fixed x ≥ 0, considerE(x) as given in Lemma 5.4. We will prove a stronger result, namely,
that for allx ≥ 0,

E(x)

(ψ(x))6
=

729ψ′(x)6

ψ(x)6 − 1458ψ′(x)4 ψ′′(x)

ψ(x)5

+
324ψ′(x)2 ψ′′(x)2

ψ(x)4 +
216ψ′′(x)3

ψ(x)3 +
540ψ′(x)3 ψ(3)(x)

ψ(x)4

− 360ψ′(x)ψ′′(x)ψ(3)(x)

ψ(x)3 +
100ψ(3)(x)

2

ψ(x)2 − 90ψ′′(x)ψ(4)(x)

ψ(x)2

≥ 0.

For fixedx ≥ 0, by Lemma 5.3 withψ in place ofϕ, we obtain

E(x)

(ψ(x))6
= 729A6 − 1458A4(A2 −B) + 324A2(A2 −B)2

+ 216(A2 −B)3 + 540A3(A3 − 3AB + 2C)− 360A(A2 −B)(A3 − 3AB + 2C)

+ 100(A3 − 3AB + 2C)2 − 90(A2 −B)(A4 − 6A2B + 3B2 + 8AC − 6D)

or

E(x)

(ψ(x))6
= A6 + 12A4B − 18A2B2 + 54B3 + 40A3C

+ 240AB C + 400C2 + 540A2D − 540BD

= A6 + 12B

((
A2 − 3B

4

)2

+
63B2

16

)
+ 40A3C + 240ABC + 400C2 + 540

(
A2 −B

)
D.

Sincexj > 0 for j = 1, 2 . . . , n, we haveA,B,C,D > 0 and all the derivatives ofψ(x) are
positive forx ≥ 0. Therefore we also have(A2 −B) = ψ′′(x)/ψ(x) > 0, and thusE(x) > 0
for x ≥ 0. �

Remark 5.6. (a) We wish to point out that in Theorem 5.5 we introduced the factorx2 in
order to simplify the ensuing algebra. In the absence of this factor we would have to
calculateϕ(5)(x)

ϕ(x)
as well asϕ(6)(x)

ϕ(x)
(see the proof of Lemma 5.3). Then, as in the proof of

Theorem 5.5, we would obtain an expression, analogous toE(x), which has112 terms
rather than nine. Nevertheless, it seems that the technique developed above, should
yield the desired result (5.12) for an arbitrary multiplier sequence rather than one with
the first two terms equal to zero.

(b) We briefly indicate here how the foregoing technique can be used to derive a sufficient
condition which guarantees thatA(4)

0 = detH
(4)
0 < 0. Let ϕ(x) := x2ψ(x), where

ψ(x) =
∏n

j=1(x + xj), xj > 0, is a polynomial inL-P+. Then, the determinant of the
4th order Hankel matrix(ϕ(i+j−2)(0))4

i,j=1 reduces to

A
(4)
0 = W (ϕ(0), ϕ′(0), ϕ′′(0), ϕ′′′(0))

= 48 (27ψ′(0)
4 − 54ψ(0)ψ′(0)

2
ψ′′(0) + 12ψ(0)2 ψ′′(0)

2

+ 20ψ(0)2 ψ′(0)ψ(3)(0)− 5ψ(0)3 ψ(4)(0)).(5.13)
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14 THOMAS CRAVEN AND GEORGECSORDAS

Guided by (5.13) and the argument used in the proof of Theorem 5.5, we form the
expression

K(x) =
27ψ′(x)4

ψ(x)4 − 54ψ′(x)2 ψ′′(x)

ψ(x)3 +
12ψ′′(x)2

ψ(x)2 +
20ψ′(x)ψ(3)(x)

ψ(x)2 − 5ψ(4)(x)

ψ(x)

and with the aid of Lemma 5.4, for fixedx ≥ 0, we obtain that

K(x) = 3(10D −B2),

where the quantitiesB =
∑n

j=1 a
2
j andD =

∑n
j=1 a

4
j have the same meaning as in

(5.9). Thus, we readily infer that if the the zeros of the polynomialψ(x) ∈ L-P+ are
distributed such that10D < B2 holds atx = 0, thenA(4)

0 < 0. By way of illustration,
considerϕ(x) = x2ψ(x) = x2(x + a)12, wherea > 0. Then forx = 0, we find that
10D = 120/a4 < 144/a4 = B2, and whence by our criterion,A(4)

0 < 0. Indeed, direct
computation yields thatA(4)

0 = −3456a44.
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