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Abstract

The notion of a probabilistic metric space was introduced by Menger in 1942.
The notion of a probabilistic normed space was introduced in 1993. The aim of
this paper is to give a necessary condition to get bounded linear operators in
probabilistic normed space.
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1. Introduction
The purpose of this paper is to present a definition of bounded linear operators
which is based on the new definition of a probabilistic normed space. This
definition is sufficiently general to encompass the most important contraction
function in probabilistic normed space. The concepts used are those of [1], [2]
and [9].

A distribution function(briefly, a d.f.) is a functionF from the extended
real lineR̄ = [−∞, +∞] into the unit intervalI = [0, 1] that is nondecreasing
and satisfiesF (−∞) = 0, F (+∞) = 1. We normalize all d.f.’s to be left-
continuous on the unextended real lineR = (−∞, +∞). For anya ≥ 0, εa is
the d.f. defined by

(1.1) εa (x) =


0, if x ≤ a

1, if x > a,

The set of all the d.f.s will be denoted by∆ and the subset of those d.f.s
called positive d.f.s. such thatF (0) = 0, by ∆+.

By settingF ≤ G wheneverF (x) ≤ G (x) for all x in R, the maximal
element for∆+ in this order is the d.f. given by

ε0 (x) =


0, if x ≤ 0,

1, if x > 0.

A triangle functionis a binary operation on∆+, namely a functionτ : ∆+×
∆+ → ∆+ that is associative, commutative, nondecreasing and which hasε0 as
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unit, that is, for allF, G, H ∈ ∆+, we have

τ (τ (F, G) , H) = τ (F, τ (G, H)) ,

τ (F, G) = τ (G, F ) ,

τ (F, H) ≤ τ (G, H) , if F ≤ G,

τ (F, ε0) = F.

Continuity of a triangle function means continuity with respect to the topology
of weak convergence in∆+.

Typical continuous triangle functions are convolution and the operationsτT

andτT ∗, which are, respectively, given by

(1.2) τT (F, G) (x) = sup
s+t=x

T (F (s) , G (t)) ,

and

(1.3) τT ∗ (F, G) (x) = inf
s+t=x

T ∗ (F (s) , G (t)) ,

for all F, G in ∆+ and allx in R [9, Sections 7.2 and 7.3], hereT is a con-
tinuoust-norm, i.e. a continuous binary operation on[0, 1] that is associative,
commutative , nondecreasing and has1 as identity;T ∗ is a continuoust-conorm,
namely a continuous binary operation on[0, 1] that is related to continuoust-
norm through

(1.4) T ∗ (x, y) = 1− T (1− x, 1− y) .

It follows without difficulty from (1.1)–(1.4) that

τT (εa, εb) = εa+b = τT ∗ (εa, τb) ,

http://jipam.vu.edu.au/
mailto:igbal501@yahoo.com
http://jipam.vu.edu.au/


Integral Means Inequalities for
Fractional Derivatives of Some
General Subclasses of Analytic

Functions

Iqbal H. Jebril and Radhi Ibrahim
M. Ali

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 18

J. Ineq. Pure and Appl. Math. 4(1) Art. 8, 2003

http://jipam.vu.edu.au

for any continuous t-normT , any continuoust-conormT ∗ and anya, b ≥ 0.
The most importantt-norms are the functionsW , Prod, andM which are

defined, respectively, by

W (a, b) = max (a + b− 1, 0) ,

prod (a, b) = a · b,
M (a, b) = min (a, b) .

Their correspondingt-norms are given, respectively, by

W ∗ (a, b) = min (a + b, 1) ,

prod∗ (a, b) = a + b− a · b,
M∗ (a, b) = max (a, b) .

Definition 1.1. A probabilistic metric (briefly PM) space is a triple(S, f, τ),
whereS is a nonempty set,τ is a triangle function, andf is a mapping from
S × S into ∆+ such that, ifFpq denoted the value off at the pair(p, q), the
following hold for allp, q, r in S:

(PM1) Fpq = ε0 if and only ifp = q.

(PM2) Fpq = Fqp.

(PM3) Fpr ≥ τ (Fpq, Fqr) .

Definition 1.2. A probabilistic normed space is a quadruple(V, ν, τ, τ ∗), where
V is a real vector space,τ andτ ∗ are continuous triangle functions, andν is a
mapping fromV into ∆+ such that, for allp, q in V , the following conditions
hold:
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(PN1) νp = ε0 if and only ifp = θ, θ being the null vector inV ;

(PN2) ν−p = νp;

(PN3) νp+q ≥ τ (νp, νq)

(PN4) νp ≤ τ ∗
(
ναp, ν(1−α)p

)
for all α in [0, 1].

If, instead of (PN1), we only haveνθ = εθ, then we shall speak of aProba-
bilistic Pseudo Normed Space, briefly a PPN space. If the inequality (PN4) is
replaced by the equalityVp = τM

(
ναp, ν(1−α)p

)
, then the PN space is called a

Serstnev space. The pair is said to be a ProbabilisticSeminormedSpace (briefly
PSN space) ifν : V → ∆+ satisfies (PN1) and (PN2).

Definition 1.3. A PSN(V, ν) space is said to be equilateral if there is a d.f.
F ∈ ∆+ different fromε0 and fromε∞, such that, for everyp 6= θ, νp = F.
Therefore, every equilateral PSN space(V, ν) is a PN space underτ = M and
τ ∗ = M where is the triangle function defined forG, H ∈ ∆+ by

M (G, H) (x) = min {G (x) , H (x)} (x ∈ [0,∞]) .

An equilateral PN space will be denoted by(V, F, M) .

Definition 1.4. Let (V, ‖·‖) be a normed space and letG ∈ ∆+ be different
from ε0 andε∞; defineν : V → ∆+ byνθ = ε0 and

νp (t) = G

(
t

‖p‖α

)
(p 6= θ, t > 0) ,

whereα ≥ 0. Then the pair(V, ν) will be called theα−simple space generated
by (V, ‖·‖) and byG.
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Theα−simple space generated by(V, ‖·‖) and byG is immediately seen to
be a PSN space; it will be denoted by(V, ‖·‖ , G; α).

Definition 1.5. There is a natural topology in PN space(V, ν, τ, τ ∗), called the
strong topology; it is defined by the neighborhoods,

Np (t) = {q ∈ V : νq−p (t) > 1− t} = {q ∈ dL (νq−p, ε0) < t} ,

wheret > 0. HeredL is the modified Levy metric ([9]).
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2. Bounded Linear Operators in Probabilistic
Normed Spaces

In 1999, B. Guillen, J. Lallena and C. Sempi [3] gave the following definition
of bounded set in PN space.

Definition 2.1. LetA be a nonempty set in PN space(V, ν, τ, τ ∗). Then

(a) A is certainly bounded if, and only if,ϕA (x0) = 1 for somex0 ∈ (0, +∞);

(b) A is perhaps bounded if, and only if,ϕA (x0) < 1 for everyx0 ∈ (0, +∞)
andl−ϕA (+∞) = 1;

(c) A is perhaps unbounded if, and only if,l−ϕA (+∞) ∈ (0, 1);

(d) A is certainly unbounded if, and only if,l−ϕA (+∞) = 0; i.e.,ϕA (x) = 0;

whereϕA (x) = inf {νp (x) : P ∈ A} andl−ϕA (x) = lim
t→x−

ϕA (t).

Moreover,A will be said to beD-bounded if either (a) or (b) holds.

Definition 2.2. Let (V, ν, τ, τ ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map
T : V → V ′ is said to be

(a) Certainly bounded if every certainly bounded setA of the space(V, ν, τ, τ ∗)
has, as image byT a certainly bounded setTA of the space(V ′, µ, σ, σ∗),
i.e., if there existsx0 ∈ (0, +∞) such thatνp (x0) = 1 for all p ∈ A, then
there existsx1 ∈ (0, +∞) such thatµTp (x1) = 1 for all p ∈ A.
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(b) Bounded if it maps everyD-bounded set ofV into aD-bounded set ofV ′,
i.e., if, and only if, it satisfies the implication,

lim
x→+∞

ϕA (x) = 1 ⇒ lim
x→+∞

ϕTA (x) = 1,

for every nonempty subsetA of V .

(c) StronglyB-bounded if there exists a constantk > 0 such that, for every
p ∈ V and for everyx > 0, µTp (x) ≥ νp

(
x
k

)
, or equivalently if there

exists a constanth > 0 such that, for everyp ∈ V and for everyx > 0,

µTp (hx) ≥ νp (x) .

(d) StronglyC-bounded if there exists a constanth ∈ (0, 1) such that, for
everyp ∈ V and for everyx > 0,

νp (x) > 1− x ⇒ µTp (hx) > 1− hx.

Remark 2.1. The identity mapI between PN space(V, ν, τ, τ ∗) into itself is
stronglyC-bounded. Also, all linear contraction mappings, according to the
definition of [7, Section 1], are stronglyC-bounded, i.e for everyp ∈ V and for
everyx > 0 if the conditionνp (x) > 1− x is satisfied then

νIp (hx) = νp (hx) > 1− hx.

But we note that whenk = 1 then the identity mapI between PN space
(V, ν, τ, τ ∗) into itself is a stronglyB-bounded operator. Also, all linear con-
traction mappings, according to the definition of [9, Section 12.6], are strongly
B-bounded.
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In [3] B. Guillen, J. Lallena and C. Sempi present the following, every
stronglyB-bounded operator is also certainly bounded and every stronglyB-
bounded operator is also bounded. But the converses need not to be true.

Now we are going to prove that in the Definition2.2, the notions of strongly
C-bounded operator, certainly bounded, bounded and stronglyB-bounded do
not imply each other.

In the following example we will introduce a stronglyC-bounded operator,
which is not stronglyB-bounded, not bounded nor certainly bounded.

Example 2.1. Let V be a vector space and letνθ = µθ = ε0, while, if p, q 6= θ
then, for everyp, q ∈ V andx ∈ R, if

νp (x) =


0, x ≤ 1

1, x > 1
µp (x) =



1
3
, x ≤ 1

9
10

, 1 < x < ∞

1, x = ∞

and if

τ (νp (x) , νq (y)) = τ ∗ (νp (x) , νq (y)) = min (νp (x) , νq (x)) ,

σ (µp (x) , µq (y)) = σ∗ (µp (x) , µq (y)) = min (µp (x) , µq (x)) ,

then(V, ν, τ, τ ∗) and(V ′, µ, σ, σ∗) are equilateral PN spaces by Definition1.3.
Now let I : (V, ν, τ, τ ∗) → (V, µ, τ, τ ∗) be the identity operator, thenI is
strongly C-bounded butI is not stronglyB-bounded, bounded and certainly
bounded, it is clear thatI is not certainly bounded and is not bounded.I is not
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stronglyB-bounded, because for everyk > 0 and forx = max
{
2, 1

k

}
,

µIp (kx) =
9

10
< 1 = νp (x) .

But I is stronglyC-bounded, because for everyp > 0 and for everyx > 0, this
conditionvp (x) > 1− x is satisfied only ifx > 1 now ifh = 7

10
x then

µIp (hx) = µIp

(
7

10x
x

)
= µp

(
7

10

)
=

1

3
>

3

10
= 1− 7

10
= 1−

(
7

10x

)
x.

Remark 2.2. We have noted in the above example that there is an operator,
which is stronglyC-bounded, but it is not stronglyB-bounded. Moreover we
are going to give an operator, which is stronglyB-bounded, but it is not strongly
C-bounded.

Definition 2.3. Let (V, ν, τ, τ ∗) be PN space then we defined

B (p) = inf
{
h ∈ R : νp

(
h+

)
> 1− h

}
.

Lemma 2.1. Let T : (V, ν, τ, τ ∗) → (V ′, µ, σ, σ∗) be a stronglyB-bounded
linear operator, for everyp in V and letµTp be strictly increasing on[0, 1], then
B (Tp) < B (p) , ∀p ∈ V.

Proof. Let η ∈
(
0, 1−γ

γ
B (p)

)
, whereγ ∈ (0, 1). ThenB (p) > γ [B (p) + η]

and so
µTp (B (p)) > µTp (γ [B (p) + η]) ,
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and whereµTp is strictly increasing on[0, 1], then

µTp (γ [B (p) + η]) ≥ νp (B (p) + η) ≥ νp

(
B (p)+)

> 1−B (p) ,

we conclude that

B (Tp) = inf
{
B (p) : µTp

(
B (p)+)

> 1−B (p)
}

,

soB (Tp) < B (p) , ∀p ∈ V.

Theorem 2.2. Let T : (V, ν, τ, τ ∗) → (V ′, µ, σ, σ∗) be a stronglyB-bounded
linear operator, and letµTp be strictly increasing on[0, 1], thenT is a strongly
C-bounded linear operator.

Proof. Let T be a strictlyB-bounded operator. Since, by Lemma2.1, B (Tp) <
B (p) , ∀p ∈ V there existγp ∈ (0, 1) such thatB (Tp) < γpB (p).

It means that

inf
{
h ∈ R : µTp

(
h+

)
> 1− h

}
≤ γ inf

{
h ∈ R : νp

(
h+

)
> 1− h

}
= inf

{
γh ∈ R : νp

(
h+

)
> 1− h

}
= inf

{
h ∈ R : νp

(
h+

γ

)
> 1− h

γ

}
.

We conclude thatνp

(
h
γ

)
> 1 −

(
h
γ

)
=⇒ µTp (h) > 1 − h. Now if x = h

γ

thenνp (x) > 1 − x =⇒ µTp (xh) > 1 − xh, soT is a stronglyC-bounded
operator.
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Remark 2.3. From Theorem2.2we have noted that under some additional con-
dition every a stronglyB-bounded operator is a stronglyC-bounded operator.
But in general, it is not true.

Example 2.2. Let V = V ′ = R andv0 = µ0 = ε0, while, if p 6= 0, then, for

x > 0, let vp (x) = G
(

x
|p|

)
, µp (x) = U

(
x
|p|

)
, where

G (x) =


1
2
, 0 < x ≤ 2,

1, 2 < x ≤ +∞,
U (x) =


1
2
, 0 < x ≤ 3

2
,

1, 3
2

< x ≤ +∞
.

Consider now the identity mapI : (R, |·| , G, µ) → (R, |·| , G, µ). Now

(a) I is a stronglyB-bounded operator, such that for everyp ∈ R and every
x > 0 then

µIp

(
3

4
x

)
= µp

(
3

4
x

)
= U

(
3x

4 |p|

)

=


1
2
, 0 < x ≤ 2 |p| ,

1, 2 |p| < x ≤ +∞,
= G

(
x

|p|

)
= vp (x) .

(b) I is not a stronglyC-bounded operator, such that for everyh ∈ (0, 1), let
x = 3

8h
, p = 1

4
. If x > 2 |p| then the conditionvp (x) > 1 − x will be
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satisfied, but we note that

µIp (hx) = µp (hx)

= U

(
hx

|p|

)
= U

(
3

2

)
=

1

2
<

5

8
= 1− h

(
3

8h

)
= 1− hx.

Now we introduce the relation between the stronglyB-bounded and strongly
C-bounded operators with boundedness in normed space.

Theorem 2.3. Let G be strictly increasing on[0, 1], thenT : (V, ‖·‖ , G, α) →
(V ′, ‖·‖ , G, α) is a stronglyB-bounded operator if, and only if,T is a bounded
linear operator in normed space.

Proof. Let k > 0 andx > 0. Then for everyp ∈ V

G

(
kx

‖Tp‖α

)
= µTp (kx) ≥ vp (x) = G

(
x

‖p‖α

)
,

if and only if
‖Tp‖ ≤ k

1
α ‖p‖ .

Theorem 2.4.LetT : (V, ‖·‖ , G, α) → (V ′, ‖·‖ , G, α) be stronglyC-bounded,
and letG be strictly increasing on[0, 1] thenT is a bounded linear operator in
normed space.
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Proof. If vp is strictly increasing for everyp ∈ V , then the quasi-inversevΛ
p is

continuous andB (p) is the unique solution of the equationx = vΛ
p (1− x) i.e.

(2.1) B (p) = vΛ
p (x) (1−B (p)) .

If vp (x) = G
(

x
‖p‖α

)
, thenvΛ

p (x) = ‖p‖α GΛ (x) and from (2.1) it follows that

(2.2) B (p) = ‖p‖α GΛ (1−B (p)) .

Suppose thatT is stronglyC-bounded, i.e. that

(2.3) B (Tp) ≤ kB (p) , ∀p ∈ V,

wherek ∈ (0, 1) .

Then (2.2) and (2.3) imply

‖Tp‖α ≤ B (Tp)

GΛ (1−B (Tp))
≤ kB (p)

GΛ (1− kB (p))
≤ kB (p)

GΛ (1−B (p))
= k ‖p‖α .

Which means thatT is a bounded in normed space.

The converse of the above theorem is not true, see Example2.2.
We recall the following theorems from [3].

Theorem 2.5. Let (V, ν, τ, τ ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map
T : V → V ′ is either continuous at every point ofV or at no point ofV .

Corollary 2.6. If T : (V, ν, τ, τ ∗) → (V ′, µ, σ, σ∗) is linear, thenT is continu-
ous if, and only if, it is continuous atθ.
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Theorem 2.7. Every stronglyB-bounded linear operatorT is continuous with
respect to the strong topologies in(V, ν, τ, τ ∗) and(V ′, µ, σ, σ∗), respectively.

In the following theorem we show that every stronglyC-bounded linear op-
eratorT is continuous.

Theorem 2.8.Every stronglyC-bounded linear operatorT is continuous.

Proof. Due to Corollary 3.1 [3], it suffices to verify thatT is continuous atθ.
Let Nθ′ (t), with t > 0, be an arbitrary neighbourhood ofθ′. If T is strongly
C-bounded linear operator then there existh ∈ (0, 1) such that for everyt > 0
andp ∈ Nθ (s) we note that

µTp (t) ≥ νp (ht) ≥ 1− ht > 1− t,

soTp ∈ Nθ′ (t); in other words,T is continuous.
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