Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 951953, 25 pages
http://dx.doi.org/10.1155/2012/951953
Research Article

A Reduced-Order TS Fuzzy Observer Scheme with Application to Actuator Faults Reconstruction

Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

Received 11 October 2012; Accepted 23 November 2012

Academic Editor: Peng Shi

Copyright © 2012 Dušan Krokavec and Anna Filasová. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper focuses on the principle for designing reduced-order fuzzy-observer-based actuator fault reconstruction for a class of nonlinear systems. The problem addressed can be indicated as an approach for a kind of reduced-order fuzzy observer design with special gain matrix structure that depends on a given matching condition specification. Using the Lyapunov theory, the stability conditions are obtained and expressed in terms of linear matrix inequalities, and the conditions for asymptotic estimation of actuator faults are derived. Simulation results illustrate the observer design procedure and demonstrate the actuator fault reconstruction effectiveness and performance.