JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 7, Issue 2, Article 50
 
Coefficient Inequality For A Function Whose Derivative Has A Positive Real Part

    Authors: Aini Janteng, Suzeini Abdul Halim, Maslina Darus,  
    Keywords: Fekete-Szegö functional, Hankel determinant, Convex and starlike functions, Positive real functions.  
    Date Received: 07/03/05  
    Date Accepted: 09/03/06  
    Subject Codes:

Primary 30C45.

 
    Editors: Anthony Sofo,  
 
    Abstract:

Let $mathcal{R}$ denote the subclass of normalised analytic univalent functions $f$ defined by $f(z)=z+{sum_{n=2}^{infty}}{a_n}{z^n}$ and satisfy

begin{displaymath}  mbox{Re}{f^{prime}(z)}>0 end{displaymath}

where $fin mathcal{R}$, we give sharp upper bound for $vert a_{2}a_{4}-a_{3}^{2}vert$.

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login