JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 7, Issue 3, Article 99
 
A Note on Multiplicatively $e$-perfect Numbers

    Authors: Le Anh Vinh, Dang Phuong Dung,  
    Keywords: Perfect number, Exponential divisor, Multiplicatively perfect, Sum of divisors, Number of divisors.  
    Date Received: 17/10/05  
    Date Accepted: 26/10/05  
    Subject Codes:

11A25, 11A99.

 
    Editors: Jozsef Sandor,  
 
    Abstract:

Let $ T_e ( n )$ denote the product of all exponential divisors of $ n$. An integer $ n$ is called multiplicatively $ e$-perfect if $ T_e ( n ) = n^2$ and multiplicatively $ e$-superperfect if $ T_e ( T_e ( n ) ) = n^2$. In this note, we give an alternative proof for characterization of multiplicatively $ e$-perfect and multiplicatively $ e$-superperfect numbers.

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login