JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 7, Issue 5, Article 163
 
Direct Approximation Theorems for Discrete Type Operators

    Authors: Zoltán Finta,  
    Keywords: Direct approximation theorem, $K-$functional, Ditzian-Totik modulus of smoothness.  
    Date Received: 16/07/06  
    Date Accepted: 10/10/06  
    Subject Codes:

41A36, 41A25.

 
    Editors: Zeev Ditzian,  
 
    Abstract:

In the present paper we prove direct approximation theorems for discrete type operators

$displaystyle (L_{n}f)( x ) = displaystyle sum_{k = 0}^{infty}  u_{n,k}( x ) lambda_{n,k}( f ),$
$ f in C[ 0 , infty ),$ $ x in [ 0 , infty )$ using a modified $ K-$functional. As applications we give direct theorems for Baskakov type operators, Szász-Mirakjan type operators and Lupas operator.

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login