Volume 4,
Issue 5, 2003
Article
93
AN ENTROPY POWER INEQUALITY FOR THE BINOMIAL FAMILY
PETER
HARREMOËS AND CHRISTOPHE VIGNAT
DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF COPENHAGEN,
UNIVERSITETSPARKEN 5,
2100 COPENHAGEN, DENMARK.
E-Mail: moes@math.ku.dk
UNIVERSITY OF COPENHAGEN AND UNIVERSITÉ DE MARNE LA VALLÉE,
77454 MARNE LA VALLÉE
CEDEX 2, FRANCE.
E-Mail: vignat@univ-mlv.fr
Received 03 April, 2003; Accepted 21 October, 2003.
Communicated by: S.S. Dragomir
|
ABSTRACT.
In this paper, we prove that the classical Entropy Power
Inequality, as derived in the continuous case, can be extended to
the discrete family of binomial random variables with parameter
1/2.
Key words:
Entropy Power Inequality, Discrete random variable.
2000 Mathematics Subject
Classification:
94A17.
|
|
|
Download this article (PDF):
Suitable for a printer:
Suitable for a monitor:
|
To view these files we
recommend you save them to your file system and then view by using
the Adobe Acrobat Reader.
That is, click on the icon using the 2nd mouse button and
select "Save Target As..." (Microsoft Internet
Explorer) or "Save Link As..." (Netscape
Navigator).
See our PDF pages for more
information.
|
|
|
Other issues
-
Volume 1, Issue 1, 2000
-
Volume 1, Issue
2, 2000
-
Volume 2, Issue
1, 2001
-
Volume 2, Issue
2, 2001
-
Volume 2, Issue
3, 2001
-
Volume 3, Issue
1, 2002
-
Volume 3, Issue
2, 2002
-
Volume 3, Issue
3, 2002
-
Volume 3, Issue
4, 2002
-
Volume 3, Issue
5, 2002
-
Volume 4, Issue
1, 2003
-
Volume 4, Issue
2, 2003
-
Volume 4, Issue
3, 2003
-
Volume 4, Issue
4, 2003
-
Volume 4, Issue
5, 2003
|
|