Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 13 (2018), 1 -- 26

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SUR UN MODÈLE DE DYNAMIQUE DE POPULATIONS STRUCTURÉ EN ÂGE: APPLICATION EN HALIEUTIQUE
(ON A MODEL OF AGE-STRUCTURED POPULATION DYNAMICS: APPLICATION IN FISHERY)

Ali Moussaoui

Abstract. The aim of this work is the formulation and the study of a stock-effort fishing model, in which the fish population is structured by age and is governed by the McKendrick-von Foerster partial differential equation while the fishing effort is described by an ordinary differential equation. In this model, the number of vessels increases when the fishery makes profit, otherwise it decreases. The existence and uniqueness of solutions for the system are proved by using the Banach fixed point theorem. Existence of several stationary solutions is studied: extinction equilibrium where there are no fish and there is no fishing, a Fishery Free Equilibrium (FFE) as well as a Sustainable Fishery Equilibrium (SFE). A relatively simple method is used to arrive at a condition of stability of stationary solutions.

2010 Mathematics Subject Classification: 92A15; 92D25; 93A30.
Keywords: Age-structured model, McKendrick-von Foerster equation, Fisheries management, Steady states, Stability.

Full text

References

  1. P. Auger, C. Lett, J.C. Poggiale, Modélisation Mathématique en écologie, Cours et exercices corrigés, Dunod, 2010.

  2. P. Auger, A. Moussaoui, G. Sallet, Basic reproduction ratio for a fishery model in a patchy environment. Acta Biotheoretica, 60 (2012), 167-188.

  3. P. Auger, R. Mchich, N, Raïssi, B, Kooi, Effects of market price on the dynamics of a spatial fishery model: over-exploited fishery/traditional fishery, Ecol Complex. 7 (2010), 13–20.

  4. P. Auger, C. Lett, A. Moussaoui, S. Pioch, Optimal number of sites in artificial pelagic multisite fisheries, Can. J. Fish. Aquat. Sci. 67 (2010), 296–303.

  5. P. Auger, J.C. Poggiale, Reduction of complexity and emergence in hierarchically organized systems : population dynamics, Systems Analysis Modelling Simulation, 26 (1996), 217-237. Zbl 0877.92027.

  6. A. D. Bazykin, Nonlinear dynamics of interacting populations, Word Scientific Series on Nonlinear Science 11. Word Scientific, Singapore, 1998. MR1635219.

  7. R. Bellman, K. Cooke, Differential Difference Equations, Academic Press, New York, 1963.

  8. S. Bhattacharya, M. Martcheva, Oscillations in a size-structured prey-predator model, Math Biosci. 228 (2010), 31-44. Zbl 1200.92039.

  9. H. Brezis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.

  10. C. W. Clark, Mathematical bioeconomics: the optimal management of renewable resources. A Wiley-Interscience, New York (Pure and Applied Mathematics), 1976.

  11. C. W. Clark, Bioeconomic modelling and fisheries management. A Wiley-Interscience Publication, New York, 1985.

  12. C. W. Clark, Mathematical bioeconomics, Pure and Applied Mathematics (New York) 2nd edn. John Wiley & Sons Inc., New York (The optimal management of renewable resources, with a contribution by Gordon Munro, A Wiley-Interscience Publication), 1990.

  13. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J Math Biol. 28 (1990), 365-382. MR1057044. Zbl 0726.92018

  14. O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley-Blackwell, 2000.

  15. P. Van den Driessche, J, Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci 180 (2002), 29-48. MR1950747. Zbl 1015.92036.

  16. W. Feller, On the integral equation of renewal theory, Ann Math Stat. 12 (1941), 243-267. MR5419.

  17. M. Gurtin, R. MacCamy, Nonlinear age-dependent population dynamics, Arch. Rational Mech Anal. 54 (1974), 281-300.

  18. F. Hoppensteadt, Mathematical Theories of Populations : Demographics, Genetics, and Epidemics, SIAM, Philadelphia, 1975. MR526771. Zbl 0304.92012.

  19. Y. Kuang, Delay Differential Equations With Applications in Population Dynamics, Mathematics in Science & Engineering Series, Academic Press, 2012. MR1218880.

  20. J. P. LaSalle, Stability of Dynamical Systems, SIAM, Philadelphia, 1976.

  21. A. Lotka, Théorie analytique des associations biologiques, 2e partie. Hermann, Paris, 1939.

  22. P. Magal, S. Ruan, Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics, Springer, Berlin, 2008. MR2445337. Zbl 1138.92029.

  23. A. McKendrick, Applications of mathematics to medical problems, Proc Edin Math Soc. 44 (1926), 98-130.

  24. A. Moussaoui, P. Auger, C. Lett, Optimal number of sites in multi-site fisheries with fish stock dependent migrations, Math Biosci Eng. 8 (2011), 769-783. MR2811011. Zbl 1259.34069.

  25. J. D. Murray, Mathematical Biology: An Introduction, Springer, 2002.

  26. F. Sharpe, A. Lotka, A problem in age-distribution, Philos Mag. 6 (1911), 435-438. JFM 42.1030.02.

  27. V. L. Smith, Economics of Production from Natural Resources. American Economic Review, 58 (1968) 409-431.

  28. V. L. Smith. On models of commercial fishing, J Polit Econ. 77 (1969) 181–198.

  29. G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, CRC Press, New York, 1985. MR772205. Zbl 0555.92014.



Ali Moussaoui
Département de Mathématiques, Faculté des Sciences, Université de Tlemcen. Algérie.
e-mail: moussaoui.ali@gmail.com

http://www.utgjiu.ro/math/sma