Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 13 (2018), 27 -- 40

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

INITIAL VALUE PROBLEMS FOR FRACTIONAL FUNCTIONAL DIFFERENTIAL INCLUSIONS WITH HADAMARD TYPE DERIVATIVES IN BANACH SPACES

John R. Graef, Nassim Guerraiche and Samira Hamani

Abstract. The authors establish sufficient conditions for the existence of solutions to boundary value problems for fractional differential inclusions involving the Hadamard type derivatives of order α ∈ (0,1] in Banach spaces.

2010 Mathematics Subject Classification: 34K09; 34K37.
Keywords: initial value problems; fractional derivatives; functional differential inclusions; Hadamard derivatives.

Full text

References

  1. R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions, Acta Applicandae Math. 109 (2010), 973--1033. MR2596185(2011a:34008). Zbl 1196.26009.

  2. R. P. Agarwal, M. Benchohra and D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math. 55 (2009), 221--230. MR2571191(2011d:34006). Zbl 1159.54001.

  3. R. P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge Tracts in Mathematics 141 Cambridge University Press, Cambridge, UK, 2001. MR1825411(2002c:47122). Zbl 1185.26010.

  4. B. Ahmed and S. K. Ntouyas, Initial value problems for hybrid Hadamard fractional equations, Electron. J. Diff. Equ. 2014 (2014), No. 161, pp. 1--8. MR3239404. Zbl 1300.34012.

  5. R. R. Akhmerov, M. I. Kamenski, A. S. Patapov, A. E. Rodkina and B. N. Sadovski, Measure of Noncompactness and Condensing Operators, Translated from the 1986 Russian original by A. Iacop., Operator Theory: Advances and Applications, 55, Birkhäuser Verlag, Bassel, 1992. MR1153247(92k:47104).

  6. J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984. MR0755330(85j:49010). Zbl 0538.34007.

  7. J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990. MR1048347(91d:49001). Zbl 0713.49021.

  8. J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60, Dekker, New York, 1980. MR0591679(82f:47066). Zbl 0441.47056.

  9. J. Banas and K. Sadarangani, On some measures of noncompactness in the space of continous functions, Nonlinear Anal. 60 (2008), 377--383. MR2369904(2008m:46024). Zbl 1134.46012.

  10. M. Benchohra, S. Bouriah and J. R. Graef, Boundary value problems for nonlinear implicit Caputo-Hadamard type fractional differential equations with impulses, Mediterr. J. Math., to appear.

  11. M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surveys in Mathematics and its Applications 3 (2008), 1--12. MR2390179(2009b:34188).
    hrefhttps://zbmath.org/?q=an:1157.26301Zbl 1157.26301.

  12. M. Benchohra, J. Henderson, and D. Seba, Boundary value problems for fractional differential inclusions in Banach Space, Frac. Diff. Cal. 2 (2012), 99--108. MR3003005.

  13. M. Benchohra, J. Henderson, and D. Seba, Meusure of noncompactenes and fractional differential equations in Banach Space, Commun. Appl. Anal. 12 (2008), 419--428. MR2494987(2010c:34088).

  14. M. Benchohra, J. J. Nieto and D. Seba, Measure of noncompactenes and fractional and hyperbolic partial fractional differential equations in Banach space, Panamer. Math. J. 20 (2010), 27--37. MR2760586. Zbl 1225.26005.

  15. P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, Math. Anal. Appl. 269 (2002), 387--400. MR1907120(2003k:47073). Zbl 1027.26004.

  16. P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002), 1--27. MR1907871(2003k:47072). Zbl 0995.26007.

  17. P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl. 270 (2002), 1--15. MR1911748(2003k:47074). Zbl 1022.26011.

  18. L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, Selected Problems of Mathematics, 25-33, 50th Anniv. Cracow Univ. Technol. Anniv. Issue 6, Cracow Univ. Technol., Kraków, 1995. MR1438064(97k:34123).

  19. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics \bf 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR0467310(57 #7169). Zbl 0346.46038.

  20. H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5--11. MR0263062(41 #7667). Zbl 0192.59802.

  21. K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992. MR1189795(94b:34026). Zbl 0760.34002.

  22. D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609--625. MR1421467(98b:34020). Zbl 0881.34005.

  23. K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. \bf 265 (2002), 229--248. MR1876137(2002m:34004).
    hrefhttps://zbmath.org/?q=an:1014.34003Zbl 1014.34003.

  24. J. R. Graef, S. R. Grace and E. Tunç, Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives, Fract. Calc. Appl. Anal. 20 (2017), 71--87, MR3613321. Zbl 1359.34009.

  25. J. R. Graef, N. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces Stud. Univ. Babeş-Bolyai Math., to appear.

  26. J. Hadamard, Essai sur l'etude des fonctions donnees par leur development de Taylor, J. Mat. Pure Appl. Ser. 8 (1892), 101--186. JFM 24.0359.01.

  27. S. Hamani, M. Benchohra and J. R. Graef, Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions, Electron. J. Diff. Equ. 10 (2010), No. 20, pp. 1--16. MR2592005(2010i:34024). Zbl 1185.26010.

  28. H. P. Heinz, On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear Anal. 7 (1983), 1351--1371. MR0726478(86i:47082). Zbl 528:47046.

  29. N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta 45 (2006), 765--772.

  30. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. MR1890106(2003f:26006). Zbl 0998.26002.

  31. A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84--89. MR2213269(2006k:34010). Zbl 1160.34301.

  32. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. MR2218073(2007a:34002). Zbl 1092.45003.

  33. V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, International Series in Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford, UK, 1981. MR0616449(82i:34072). Zbl 0456.34002.

  34. A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys. 13 (1965), 781--786. MR0196178(33 #4370).

  35. S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. \bf 2004 (2004), 697--701. MR2054178(2005b:34074). Zbl 1069.34002.

  36. H. Mönch, Boundary value problem for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 75 (1980), 985--999. MR0586861(82c:34075). Zbl 0462.34041.

  37. D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl. 245 (2000), 594--612. MR1758558(2001b:47112). Zbl 0956.47026.

  38. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. MR1658022(99m:26009). Zbl 0924.34008.

  39. S. Szufla, On the application of measure of noncompactness to existence theorems, Rend. Semin. Mat. Univ. Padova 75 (1986), 1--14. MR0847653(87g:34071). Zbl 0589.45007.

  40. P. Thiramanus, S. K. Ntouyas and J. Tariboon, Existence and uniqueness results for Hadamard- type fractional differential equations with nonlocal fractional integral boundary conditions, Abstr. Appl. Anal. (2014), Art. ID 902054, 9 pp. MR3228094.



John R. Graef
Department of Mathematics,
University of Tennessee at Chattanooga,
Chattanooga, TN 37403-2504, USA.
e-mail: John-Graef@utc.edu

Nassim Guerraiche
Laboratoire des Mathématiques Appliqués et Pures,
Université de Mostaganem,
B.P. 227, 27000, Mostaganem, ALGERIE.
nassim.guerraiche@univ-mosta.dz

Samira Hamani
Laboratoire des Mathématiques Appliqués et Pures,
Université de Mostaganem,
B.P. 227, 27000, Mostaganem, ALGERIE.
hamani_samira@yahoo.fr

http://www.utgjiu.ro/math/sma