Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 13 (2018), 183 -- 213

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SOLVING THE NONLINEAR BIHARMONIC EQUATION BY THE LAPLACE-ADOMIAN AND ADOMIAN DECOMPOSITION METHODS

Man Kwong Mak, Chun Sing Leung and Tiberiu Harko

Abstract. The biharmonic equation, as well as its nonlinear and inhomogeneous generalizations, plays an important role in engineering and physics. In particular the focusing biharmonic nonlinear Schrödinger equation, and its standing wave solutions, have been intensively investigated. In the present paper we consider the applications of the Laplace-Adomian and Adomian Decomposition Methods for obtaining semi-analytical solutions of the generalized biharmonic equations of the type Δ 2y+α Δ y+ω y+b2+g( y) =f, where α , ω and b are constants, and g and f are arbitrary functions of y and the independent variable, respectively. After introducing the general algorithm for the solution of the biharmonic equation, as an application we consider the solutions of the one-dimensional and radially symmetric biharmonic standing wave equation Δ 2R+R-R2σ +1=0, with σ =constant. The one-dimensional case is analyzed by using both the Laplace-Adomian and the Adomian Decomposition Methods, respectively, and the truncated series solutions are compared with the exact numerical solution. The power series solution of the radial biharmonic standing wave equation is also obtained, and compared with the numerical solution.

2010 Mathematics Subject Classification: 34K28; 34L30; 34M25; 34M30; 35C10
Keywords: Biharmonic equation; Laplace-Adomian Decomposition method; One dimensional standing wave equation; Radial standing wave equation

Full text

References

  1. K. Abbaoui and Y. Cherrualt, Convergence of Adomian's method applied to differential equations, Comp. Math. Appl. 28 (1994), 103-109. MR1287509(95g:65090). Zbl 0809.65073.

  2. K. Abbaoui, Y. Cherrualt, Convergence of Adomian's method applied to nonlinear equations, Math. Comp. Mod. 20 (1994), 69-73. MR1302630(65H05). Zbl 0822.65027.

  3. G. Adomian, Decomposition solution for Duffing and Van der Pol oscillators, Int. J. Math. & Math. Sci. 9 (1986), 731-732. MR0870528. Zbl 0605.34036.

  4. G. Adomian, Convergent series solution of nonlinear equations, J. Comput. Appl. Math. 11 (1984), 225-230. Zbl 0549.65034.

  5. G. Adomian, On the convergence region for decomposition solutions, J. Comput. Appl. Math. 11 (1984), 379-380. MR0777113(65U05). Zbl 0547.65053.

  6. G. Adomian, Nonlinear stochastic dynamical systems in physical problems, J. Math. Anal. Appl. 111 (1985), 105-113. MR0808665(86m:60161). Zbl 0582.60067.

  7. G. Adomian, A review of the Decomposition Method in Applied Mathematics, J. Math. Anal. Appl. 135 (1988), 501-544. MR0967225 (89j:00046). Zbl 0671.34053.

  8. G. Adomian, Solving Frontier Problems of Physics: the Decomposition Method, Kluwer, Dordrecht, The Netherlands, 1994. MR1282283(95e:00026). Zbl 0802.65122.

  9. G. Adomian, R. Rach, Modified Adomian Polynomials, Math. Comp. Mod. 24 (1996), 39-46. MR1426307 (98b:33017). Zbl 0874.65051.

  10. E. Babolian, S. Javadi, Restarted Adomian Method for Algebraic Equations, Appl. Math. Comput. 146 (2003), 533-541. MR2008570. Zbl 1032.65049.

  11. E. Babolian, S. Javadi, H. Sadehi, Restarted Adomian Method for Integral Equations, Appl. Math. Comput. 153 (2004), 353-359. MR2064662. Zbl 1048.65132.

  12. H. O. Bakodah, Some Modification of the Adomian Decomposition Method Applied to Nonlinear System of Fredholm Integral Equations of the Second Kind, Int. J. Contemp. Math. Sciences, 7 (2012), 929-942. MR2905162.

  13. G. Baruch, G. Fibich, E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrödinger equation, SIAM J. Appl. Math. 70 (2010), 3319-3341. MR2763506(2012b:35317). Zbl 1210.35224.

  14. G. Baruch, G. Fibich, E. Mandelbaum, Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation, Nonlinearity 23 (2010), 2867-2887. MR2727174 (2012c:35407). Zbl 1202.35294.

  15. G. Baruch, G. Fibich, Singular solutions of the L2-supercritical biharmonic nonlinear Schrödinger equation, Nonlinearity 24 (2011), 1843-1859. MR2802308 (2012e:35235). Zbl 1230.35125.

  16. J. A. Belinchon, T. Harko, M. K. Mak, Approximate Analytical Solution for the Dynamic Model of Large Amplitude Non-Linear Oscillations Arising in Structural Engineering, J. Applied Math. Eng. 8 (2016), 25-34.

  17. J. Biazar, E. Babolian, R. Islam, Solution of the system of ordinary differential equations by Adomian Decomposition Method, Appl. Math. Comput. 147 (2004), 713-719. MR2011082. Zbl 1034.65053.

  18. J. Biazar, E. Babolian, A. Nouri, R. Islam, An alternate algorithm for computing Adomian polynomials in special cases, Appl. Math. Comput. 138 (2003), 523-529. MR1950081. Zbl 1027.65076.

  19. J. Biazar, M. Tango, E. Babolian, R. Islam, Solution of the kinetic modeling of lactic acid fermentation using Adomian decomposition method, Appl. Math. Comput. 144 (2003), 433-439. MR1994082. Zbl 1048.92013.

  20. C. G. Boehmer, T. Harko, Can dark matter be a Bose-Einstein condensate?, JCAP 06 (2007), 025. doi:10.1088/1475-7516/2007/06/025.

  21. J. Boos, Gravitational Friedel oscillations in higher-derivative and infinite-derivative gravity?, arXiv:1804.00225 [gr-qc] (2018).

  22. K. T. Chau, Theory of differential equations in engineering and mechanics, CRC Press Taylor & Francis Group, Boca Raton, USA, 2018. MR3702065.

  23. Y. Cherruault, G. Adomian, K. Abbaoui, R. Rach, Further remarks on convergence of Decomposition Method, Int. J. Bio-Med. Comp. 38 (1995), 89-93. doi:org/10.1016/0020-7101(94)01042-Y.

  24. H. Fatoorehchi, R. Zarghami, H. Abolghasemi, R. Rach, Chaos control in the cerium-catalyzed Belousov-Zhabotinsky reaction using recurrence quantification analysis measures, Chaos, Solitons & Fractals 76 (2015), 121-129. Zbl 1352.93053.

  25. G. Fibich, G. C. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schr"odinger equation in critical dimension, SIAM J. Applied Math. 60 (2000), 183-240. MR1740841(2000j:78013). Zbl 1026.78013.

  26. G. Fibich, B. Ilan, G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Applied Math. 62 (2002), 1437-1462. MR1898529(2003b:35198). Zbl 1003.35112.

  27. H. Ghasemi, M. Ghovatmand, S. Zarrinkamar, H. Hassanabadi, Solution of the nonlinear Klein-Gordon equation for two new terms via the Adomian decomposition method, Eur. Phys. J. Plus 129 (2014), 32. doi:10.1140/epjp/i2014-14032-4.

  28. T. Harko, Evolution of cosmological perturbations in Bose-Einstein condensate dark matter, Mon. Not. Roy. Astron. Soc. 413 (2011), 3095-3104. doi:10.1111/j.1365-2966.2011.18386.x.

  29. T. Harko, Bose-Einstein condensation of dark matter solves the core/cusp problem, JCAP 05 (2011), 022. doi:10.1088/1475-7516/2011/05/022.

  30. T. Harko, G. Mocanu, Cosmological evolution of finite temperature Bose-Einstein condensate dark matter, Phys. Rev. D 85 (2012), 084012. doi:10.1103/PhysRevD.85.084012.

  31. N. Hayashi, J. A. Mendez-Navarro, P. I. Naumkin, Asymptotics for the fourth-order nonlinear Schrödinger equation in the critical case, J. Diff. Eqs. 261 (2016), 5144-5179. MR3542971. Zbl 1353.35262.

  32. S. He, K. Sun, S. Banerjee, Dynamical properties and complexity in fractional-order diffusionless Lorenz system, Eur. Phys. J. Plus 131 (2016), 254. doi:10.1140/epjp/i2016-16254-8.

  33. S. He, K. Sun, X. Mei, B. Yan, S. Xu, Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative, Eur. Phys. J. Plus 132 (2017), 36. doi:10.1140/epjp/i2017-11306-3.

  34. H. Jafari, V. Daftardar-Gejji, Revised Adomian decomposition method for solving a system of nonlinear equations, Appl. Math. Comput. 175 (2006), 1-7. MR2216321. Zbl1088.65047.

  35. H. Jafari, V. Daftardar-Gejji, Revised Adomian decomposition method for solving systems of ordinary and fractional differential equations, Appl. Math. Comput. 181 (2006), 598-608. MR2216321. Zbl1148.65319.

  36. C. Jin, M. Liu, A new modification of Adomian decomposition method for solving a kind of evolution equation, Appl. Math. Comput. 169 (2005), 953-962. MR2174695(2006e:35291). Zbl 1121.65355.

  37. A. K. Khalifa, The decomposition method for one dimensional biharmonic equations, Int. J. Sim. and Proc. Mod. 2 (2006), 33-36. doi.org/10.1504/IJSPM.2006.009010.

  38. L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford, UK, 1970. MR0106584.

  39. D. M. Lerner, G. M. Lerner, A simplified algorithm for the inverse Laplace transform, Radiophysics and Quantum Electronics 13 (1970), 482-484. MR0282500.

  40. X.-G. Luo, A Two-Step Adomian Decomposition Method, Appl. Math. Comput. 170 (2005), 570-583. MR2177562. Zbl 1082.65581.

  41. M. K. Mak, C. S. Leung, T. Harko, Computation of the general relativistic perihelion precession and of light deflection via the Laplace-Adomian Decomposition Method, Adv. High En. Phys. 2018 (2018), 7093592. MR3825213.

  42. M. Marin, Contributions on uniqueness in thermoelastodynamics on bodies with voids, Cienc. Mat.(Havana) 16 (1998), 101-109. MR1687183(2000a:74064). Zbl 1071.74588.

  43. M. Marin, An evolutionary equation in thermoelasticity of dipolar bodies, J. Math. Phys. 40, (1999), 1391-1399. MR1674677(2000b:74034). Zbl 0967.74009.

  44. M. Marin, O. Florea, On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies, An. St. Univ. Ovidius Constanta-Seria Mathematics 22 (2014), 169-188. MR3187744. Zbl 1340.74023.

  45. S. T. Mohyud-Din, W. Sikander, U. Khan, N. Ahmed, Optimal variational iteration method using Adomian's polynomials for physical problems on finite and semi-infinite intervals, Eur. Phys. J. Plus 132 (2017), 236. doi:10.1140/epjp/i2017-11506-9.

  46. M. M. Mousa, M. Reda, The method of lines and Adomian Decomposition for obtaining solitary wave solutions of the KdV Equation, Applied Physics Research 5 (2013), 43-57. doi:10.5539/apr.v5n3p43.

  47. P. I. Naumkin, J. J. Perez, Higher-order derivative nonlinear Schrödinger equation in the critical case, J. Math. Phys. 59 (2018), 021506. MR3766376. Zbl 1390.35338.

  48. K. Parand, J. A. Rad, M. Ahmadi, A comparison of numerical and semi-analytical methods for the case of heat transfer equations arising in porous medium, Eur. Phys. J. Plus 131 (2016), 300. doi:10.1140/epjp/i2016-16300-7.

  49. B. Pausader, S. Xia, Scattering theory for the fourth-order Schrödinger equation in low dimensions, Nonlinearity 26 (2013), 2175-2191. MR3078112. Zbl 1319.35240.

  50. R. Rach, G. Adomian, R. E. Meyers, A modified decomposition, Comp. & Math. Appl. 23 (1992), 17-23. MR1147059(92i:34015).

  51. J. Ruan, K. Sun, J. Mou, S. He, L. Zhang, Fractional-order simplest memristor-based chaotic circuit with new derivative, Eur. Phys. J. Plus 133 (2018), 3. doi:10.1140/epjp/i2018-11828-0.

  52. J. Ruan, Z. Lu, A modified algorithm for the Adomian decomposition method with applications to Lotka-Volterra systems, Math. Comput. Mod. 46 (2007), 1214-1224. MR2376703 (2008j:65112). Zbl 1133.65046.

  53. M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory (Lecture Notes in Mathematics: 1748), Springer Verlag, Berlin, Heidelberg, New York, 2000. MR1810360(2002a:76004). Zbl 0962.76001.

  54. A. P. S. Selvadurai, Partial Differential Equations in Mechanics, Vol. 2, The Biharmonic Equation, Poisson's Equation, Springer Verlag, Berlin Heidelberg New York, 2000. MR1844796.

  55. Ch. Tsitouras, Rational Approximants to the Solution of the Brusselator System compared to the Adomian Decomposition Method, Int. J. Contemp. Math. Sciences 4 (2009), 815-820. MR2603474. Zbl 1188.65094.

  56. L. Visinelli, Condensation of galactic cold dark matter, JCAP 1607 (2016), 009. doi:10.1088/1475-7516/2016/07/009.

  57. A.-M. Wazwaz, The Modified Decomposition Method and Padé Approximation for Solving the Thomas-Fermi Equation, Appl. Math. Comput. 105 (1999), 11-19. MR1706059(2000d:65120). Zbl 0956.65064.

  58. A.-M. Wazwaz, A reliable modification of Adomian Decomposition Method, Appl. Math. Comput. 102 (1999), 77-86. MR1682855(99m:65156). Zbl0928.65083.

  59. A.-M. Wazwaz, S. M. El-sayed, A new modification of the Adomian Decomposition Method for linear and nonlinear operators, Appl. Math. Comput. 122 (2001), 393-405. MR1842617 (2002e:35014). Zbl1027.35008.

  60. A.-M. Wazwaz, Adomian decomposition method for a reliable treatment of the Emden-Fowler equation, Appl. Math. Comput. 161 (2005), 543-560. MR2112423(2005h:65125). Zbl 1061.65064.

  61. A.-M. Wazwaz, Adomian Decomposition Method for a reliable treatment of the Bratu type equation, Appl. Math. Comput. 166 (2005), 652-663. MR2151056. Zbl 1073.65068.

  62. Y. Xu, K. Sun, S. He, L. Zhang, Dynamics of a fractional-order simplified unified system based on the Adomian decomposition method, Eur. Phys. J. Plus 131 (2016), 186. doi:10.1140/epjp/i2016-16186-3.

  63. B.-Q. Zhang, Q.-B. Wu, X.-G. Luo, Experimentation with Two-Step Adomian Decomposition Method to Solve Evolution Models, Appl. Math. Comput. 175 (2006), 1495-1502. MR2225603. Zbl 1093.65100.

  64. L. Zhang, K. Sun, S. He, H. Wang, Y. Xu, Solution and dynamics of a fractional-order 5-D hyperchaotic system with four wings, Eur. Phys. J. Plus 132 (2017), 31. doi:10.1140/epjp/i2017-11310-7.



Man Kwong Mak
Departamento de F\isica, Facultad de Ciencias Naturales,
Universidad de Atacama, Copayapu 485,
Copiapó, Chile.
e-mail: mankwongmak@gmail.com

Chun Sing Leung
Department of Applied Mathematics,
Hong Kong Polytechnic University,
Hong Kong, Hong Kong SAR, P. R. China.
e-mail: chun-sing-hkpu.leung@polyu.edu.hk
http://www.polyu.edu.hk/ama/people/detail/45/

Tiberiu Harko
Department of Physics, Babes-Bolyai University
Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
School of Physics, Sun Yat Sen University,
510275 Guangzhou, P. R. China.
Department of Mathematics, University College London,
Gower Street, London WC1E 6BT, United Kingdom.
e-mail: t.harko@ucl.ac.uk


http://www.utgjiu.ro/math/sma