Loop-Erased Random Walks, Spanning Trees and Hamiltonian Cycles
Abstract
We establish a formula for the distribution of loop-erased random walks at certain random times. Several classical results on spanning trees, including Wilson's algorithm, follow easily, as well as a method to construct random Hamiltonian cycles.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 39-50
Publication Date: December 3, 1999
DOI: 10.1214/ECP.v5-1016
References
- D. Aldous and J. Fill. Reversible Markov Chains. To appear.
- R. Burton and R. Pemantle. Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21 (1993), no. 3, 1329--1371. Math. Review 94m:60019
- G.F. Lawler. Loop-erased random walk. Perplexing Problems in Probability, Birkhauser-Boston (1999), 197--217.
- I. Benjamini, R. Lyons, Y. Peres and O. Schramm. Uniform spanning forests. To appear, Ann Probab.
- G. Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72 (1847) 497--08.
- R. Kenyon. The asymptotic determinant of the discrete Laplacian. Preprint (1999).
- R. Lyons and Y. Peres. Probability on Trees and Networks. To appear.
- J.G. Propp and D.B. Wilson. How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996). J. Algorithms 27 (1998), no. 2, 170--217. Math. Review 99g:60116
- E. Seneta. (1973). Non-negative matrices and Markov chains. Springer. Math. Review 85i:60058

This work is licensed under a Creative Commons Attribution 3.0 License.