On Uniqueness of a Solution of $Lu=u^\alpha$ with Given Trace
Abstract
A boundary trace $(\Gamma, \nu)$ of a solution of $\Delta u = u^\alpha$ in a bounded smooth domain in $\mathbb{R}^d$ was first constructed by Le Gall \cite{LGOne} who described all possible traces for $\alpha = 2, d= 2$ in which case a solution is defined uniquely by its trace. In a number of publications, Marcus, V\'eron, Dynkin and Kuznetsov gave analytic and probabilistic generalization of the concept of trace to the case of arbitrary $\alpha > 1, d \ge 1$. However, it was shown by Le GallĀ that the trace, in general, does not define a solution uniquely in case $d\ge (\alpha +1)/(\alpha -1)$. He offered a sufficient condition for the uniqueness and conjectured that a uniqueness should be valid if the singular part $\Gamma$ of the trace coincides with the set of all explosion points of the measure $\nu$. Here, we establish a necessary condition for the uniqueness which implies a negative answer to the above conjecture.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 137-147
Publication Date: May 7, 2000
DOI: 10.1214/ECP.v5-1027
References
- C. Dellacherie and P.-A. Meyer, Probabilités et potentiel, Hermann, Paris, 1975, 1980, 1983, 1987. MR 58 #7557, MR 82b:60001, MR 86b:60003, MR 88k:60002
- E. B. Dynkin, Superprocesses and partial differential equations, Ann. Probab. 21 (1993), 1185--1262. MR 94j:60156
- E. B. Dynkin, Stochastic boundary values and boundary singularities for solutions of the equation L u=u^alpha, J. Functional Analysis 153 (1998), 147--186. MR 98m:60125
- E. B. Dynkin and S. E. Kuznetsov, Linear additive functionals of superdiffusions and related nonlinear p.d.e., Trans. Amer. Math. Soc. 348 (1996), 1959--1987. MR 97d:60135
- E. B. Dynkin and S. E. Kuznetsov, Solutions of L u=u^alpha dominated by L-harmonic functions, Journale d'Analyse Mathematique 68 (1996), 15--37. MR 97f:35048
- E. B. Dynkin and S. E. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure & Appl. Math 49 (1996), 125--176. MR 97m:60114
- E. B. Dynkin and S. E. Kuznetsov, Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure & Appl. Math. 51 (1998), 897--936. MR 99f:35046
- E. B. Dynkin and S. E. Kuznetsov, Solutions of nonlinear differential equations on a {R}iemannian manifold and their trace on the Martin boundary, Transact. Amer. Math. Soc. 350 (1998), 4521--4552. MR 99c:60168c
- E. B. Dynkin and S. E. Kuznetsov, Trace on the boundary for solutions of nonlinear differential equations, Transact. Amer. Math. Soc. 350 (1998), 4499--4519. MR 99a:60084
- A. Gmira and L. Veron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math.J. 64 (1991), 271--324. MR 93a:35053
- S. E. Kuznetsov, sigma-moderate solutions of Lu=u^alpha and fine trace on the boundary, C. R. Acad. Sci. Paris, Serie I, 326 (1998), 1189--1194. MR 99g:35032
- J.-F. Le Gall, Solutions positives de Delta u=u^2 dans le disque unité, C.R. Acad. Sci. Paris, Serie I, 317 (1993), 873--878. MR 94h:35059
- J.-F. Le Gall, A probabilistic approach to the trace at the boundary for solutions of a semilinear parabolic differential equation, J. Appl.Math. Stochast. Analysis 9 (1996), 399--414. MR 97m:35125
- J.-F. Le Gall, A probabilistic Poisson representation for positive solutions of Delta u = u^2 in a planar domain}}, Comm. Pure & Appl Math. (1997), 69--103. MR 98c:60144
- M. Marcus and L. Veron, Trace au bord des solutions positives d'équations elliptiques non linéaires}, C.R. Acad.Sci Paris, Serie I, 321 (1995), 179--184. MR 96f:35045
- M. Marcus and L. Veron, Trace au bord des solutions positives d'équations elliptiques et paraboliques non linéaires. Resultats d'existence and d'unicité, C.R. Acad.Sci Paris, Serie I, 323 (1996), 603--608. MR 97f:35012
- M. Marcus and L. Veron, The boundary trace of positive solutions of semilinear elliptic equations, I: The subcritical case, Arch. Rat. Mech. Anal. 144 (1998), 201--231. MR 2000a:35077
- M. Marcus and L. Veron, The boundary trace of positive solutions of semilinear elliptic equations: The supercritical case, J. Math. Pures Appl. 77 (1998), 481--524. MR 99g:35045

This work is licensed under a Creative Commons Attribution 3.0 License.