$L^1$-Norm of Infinitely Divisible Random Vectors and Certain Stochastic Integrals
Jan Rosinski (University of Tennessee)
Abstract
Equivalent upper and lower bounds for the $L^1$ norm of Hilbert space valued infinitely divisible random variables are obtained and used to find bounds for different types of stochastic integrals.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 15-29
Publication Date: January 10, 2001
DOI: 10.1214/ECP.v6-1031
References
- De la Pena, V.H. and Gine, E. (1999), Decoupling. From dependence to independence. Springer-Verlag, New York. Math. Review 99k:60044
- Dunford, N and Schwartz, J.T. (1958), Linear Operators, Part I: General Theory.Decoupling. Wiley, New York. Math. Review 90g:47001a
- I.I. Gihman and A.V. Skorohod. (1975), The theory of Stochastic Processes, Vol. 2. Springer, Berlin. Math. Review 51:11656
- Klass, M.J. (1980), Precision bounds for the relative error in the approximation of E|S_n| and extensions. Ann. Probab. 8, 350--367. Math. Review 82h:60097
- Kwapien, S. and Woyczynski, W.A. (1992), Random Series and Stochastic Integrals: Single and Multiple. Birkh"auser, Boston. Math. Review 94k:60074
- Marcus, M.B. and Rosinski, J. Continuity of stochastic integrals with respect to infinitely divisible random measures. 2000 (preprint) Math. Review number not available.
- Parthasarathy, K.R. (1967), Probability measures on metric spaces. Academic Press, New York. Math. Review 37:2271

This work is licensed under a Creative Commons Attribution 3.0 License.