Download this PDF file Fullscreen Fullscreen Off
References
- D.J. Aldous and J.A. Fill. (2001), Reversible Markov chains and random walks on graphs. Book in preparation. Math. Review number not available.
- N. Alon and J. H. Spencer. (1992), The Probabilistic Method. Wiley. Math. Review 93h:60002
- E. Behrends. (2000), Introduction to Markov Chains, with special emphasis on rapid mixing. Veiweg. Math. Review 2000j:60083
- M. H. Chen, Q. M. Shao, and J.G. Ibrahim. (2000), Monte Carlo Methods in Bayesian Computation. Springer-Verlag. Math. Review 2000k:65014
- P. Diaconis and L. Saloff-Coste. (1998), What do we know about the Metropolis algorithm ? J. Comput. System Sci. 57 20-36. Math. Review 2000b:68094
- S.T. Garren and R.L. Smith. (2000), Estimating the second largest eigenvalue of a Markov transition matrix. Bernoulli 6 215--242. Math. Review 2001b:60087
- W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors. (1996), Markov Chain Monte Carlo in Practice. London, Chapman and Hall. Math. Review 97d:62006
- P. Lezaud. (1998), Chernoff-type bound for finite Markov chains. Ann. Appl. Probab. 8 849--867. Math. Review 99f:60061
- J.S. Liu. (2001), Monte Carlo Strategies in Scientific Computing. Springer. Math. Review number not available.
- D. Randall and A. Sinclair. (2000), Self-testing algorithms for self-avoiding walks. J. Math. Phys. 41 1570--1584. Math. Review 2001c:82033
- C.P. Robert, editor. (1998), Discretization and MCMC Convergence Assessment. Number 135 in Lecture Notes in Statistics. Springer-Verlag. Math. Review 99m:65012
- C.P. Robert and G. Casella. (1999), Monte Carlo Statistical Methods. Springer-Verlag. Math. Review 2001g:62020

This work is licensed under a Creative Commons Attribution 3.0 License.