Download this PDF file Fullscreen Fullscreen Off
References
- J. Baik (2000), Random vicious walks and random matrices. Comm. Pure Appl. Math. 53, 1385-1410. Math. Review 1 773 413
- J. Baik, P. Deift and K. Johansson (1999), On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12, no. 4, 1119-1178. Math. Review 2000e:05006
- Yu. Baryshnikov (2001), GUES and QUEUES. Probab. Theor. Rel. Fields 119, 256-274. Math. Review 1 818 248
- Ph. Biane (1994), Quelques propriétés du mouvement brownien dans un cone.. Stoch. Proc. Appl. 53, no. 2, 233-240. Math. Review 95j:60129
- Ph. Bougerol and Th. Jeulin (2001), Paths in Weyl chambers and random matrices. In preparation. Math. Review number not available.
- P. Brémaud (1981), Point Processes and Queues: Martingale Dynamics. Springer-Verlag. Math. Review 82m:60058
- P. Brémaud (1999), Markov Chains. Gibbs Fields, Monte-Carlo Simulation, and Queues. Texts in App. Maths., vol. 31. Springer. Math. Review 2000k:60137
- P.J. Burke (1956), The output of a queueing system. Operations Research 4, no. 6, 699--704. Math. Review 18,707g
- E. Cépa and D. Lépingle (1997), Diffusing particles with electrostatic repulsion. Probab. Th. Rel. Fields 107, no. 4, 429-449. Math. Review 98k:60177
- J.L. Doob (1984), Classical Potential Theory and its Probabilistic Counterpart. Springer. Math. Review 1 814 344
- F.J Dyson (1962), A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191-1198. Math. Review 26 #5904
- S.N. Ethier and T.G. Kurtz (1986), Markov Processes: Characterization and Convergence. Wiley, New York. Math. Review 88a:60130
- P.J. Forrester (1999). Random walks and random permutations. Preprint, 1999. (xxx math.CO/9907037) Math. Review number not available.
- P.W. Glynn and W. Whitt (1991), Departures from many queues in series. Ann. Appl. Prob. 1, no. 4, 546-572. Math. Review 92i:60162
- D. Grabiner (1999), Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré Probab. Statist. 35, no. 2, 177-204. Math. Review 2000i:60091
- J. Gravner, C.A. Tracy and H. Widom (2001), Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102, nos. 5-6, 1085-1132. Math. Review number not available.
- J. M. Harrison and R.J. Williams (1990), On the quasireversibility of a multiclass Brownian service station. Ann. Probab. 18, 1249-1268. Math. Review 91i:60204
- D. Hobson and W. Werner (1996), Non-colliding Brownian motion on the circle. Bull. Math. Soc. 28, 643-650. Math. Review 97k:60217
- K. Johansson (2000), Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437-476. Math. Review 1 737 991
- K. Johansson (1999), Discrete orthogonal polynomial ensembles and the Plancherel measure. Preprint 1999, to appear in Ann. Math. (xxx math.CO/9906120) Math. Review number not available.
- F.P. Kelly (1979), Reversibility and Stochastic Networks. Wiley. Math. Review 81j:60105
- Wolfgang König and Neil O'Connell (2001), Eigenvalues of the Laguerre process as non-colliding squared Bessel processes. To appear in Elect. Commun. Probab.. Math. Review number not available.
- Wolfgang König, Neil O'Connell and Sebastien Roch (2001), Non-colliding random walks, tandem queues and discrete ensembles. Preprint. Math. Review number not available.
- P.M. Morse (1955), Stochastic properties of waiting lines. Operations Research 3, 256. Math. Review 17,51d
- H. Matsumoto and M. Yor (1999), A version of Pitman's 2M-X theorem for geometric Brownian motions. C.R. Acad. Sci. Paris 328, Série I, 1067-1074. Math. Review 2000d:60134
- M.L. Mehta (1991), Random Matrices: Second Edition. Academic Press. Math. Review 92f:82002
- G.G. O'Brien (1954), The solution of some queueing problems. J. Soc. Indust. Appl. Math. 2, 134. Math. Review 16,600h
- Neil O'Connell and Marc Yor (2001), Brownian analogues of Burke's theorem. Stoch. Proc. Appl., to appear. Math. Review number not available.
- J. W. Pitman (1975), One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7, 511-526. Math. Review 51 #11677
- J. W. Pitman and L.C.G. Rogers (1981), Markov functions. Ann. Probab. 9, 573-582. Math. Review 82j:60133
- E. Reich (1957), Waiting times when queues are in tandem. Ann. Math. Statist. 28, 768-773. Math. Review 19,1203b
- Ph. Robert (2000), Réseaux et files d'attente: méthodes probabilistes. Math. et Applications, vol. 35. Springer. Math. Review number not available.
- C.A. Tracy and H. Widom (1994), Fredholm determinants, differential equations and matrix models. Comm. Math. Phys. 163, no. 1, 33-72. Math. Review 95e:82005
- David Williams (1979), Diffusions, Markov Processes and Martingales. Volume 1: Foundations. Wiley. Math. Review 80i:60100
- David Williams (1974), Path decomposition and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc. 28, no. 3, 738-768. Math. Review 50 #3373

This work is licensed under a Creative Commons Attribution 3.0 License.