Canonical Decompositions of Certain Generalized Brownian Bridges
Abstract
We define a generalized Brownian bridge and we provide some information about its filtration. Two decompositions of this process as a semi-martingale are given. The first one is a Volterra decomposition and the second one is its canonical decomposition in its own filtration.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 27-35
Publication Date: December 17, 2001
DOI: 10.1214/ECP.v7-1044
References
- Alili, L., Wu, C.T. (2000) Further results on some linear singular stochastic differential equations, submitted.
- Baudoin, F. (2001) Conditioned stochastic differential equations: Theory and applications. Prépublication PMA-649.
- Chaleyat-Maurel, M., Jeulin, Th. (1985) Grossissement gaussien de la filtration brownienne. Lecture Notes in Mathematics , 1118, Grossissements de filtrations: exemples et applications, ed. Th. Jeulin and M. Yor, 59-109, Springer Math. Reviews 88h:60104
- Donati-Martin, C., Yor, M.(1997) Some Brownian functionals and their laws. Ann. Prob., 25, no. 3, 1011-1058 Math. Reviews 98e:60135
- Fitzsimmons, P.J. (1998) Markov processes with identical bridges. Electron. J. Prob. 3, no. 12 (electronic) Math. Reviews 99h:60142
- Fitzsimmons, P.J., Pitman, J., Yor, M. (1993) Markovian bridges, construction, Palm interpretation, and splicing. Seminar on Stochastic processes, Birkhäuser, Boston, E. çinlar and K.L. Chung and M.J. Sharpe, 101-134 Math. Reviews 95i:60070
- F"ollmer, H., Wu, C.-T., Yor, M. (2000) On weak Brownian motions of arbitrary order. A.I.H.P. Prob. Stat.,36, no. 4, 447-487 Math. Reviews 2001k:60114
- Hida, T., Hitsuda, M. (1993) Gaussian processes. American Mathematical Society Math. Reviews 95j60057
- Jeulin, Th., Yor, M. (1990) Filtration des ponts browniens et équations differentielles linéaires. Lecture Notes in Mathematics, 1426, Séminaire de Probabilités XXIV 1988/89, ed. J. Azéma, P. A. Meyer and M. Yor, 227-265, Springer Math. Reviews 91i:60206
- Karatzas, I., Shreve, S.E. (1988) Brownian motion and stochastic calculus. Springer, Berlin Heidelberg New York Math. Reviews 92h:60127
- Pitman, J.(1999) Brownian, bridge, excursions, and meander characterized by sampling at independent uniform times. E.j.p., Volume 14 Math. Reviews 2000e:60137
- Protter, Ph. (1992) Stochastic integration and differential equations. A new approach, Springer Math. Reviews 91i:60148
- Salminen, P. (1984) Brownian excursions revisited. In Seminar on Stochastic Processes 1983, pages 161-187, Birkhauser Math. Reviews 88m:60209
- Yor, M. (1992) Some aspects of Brownian motion, Part I: some special functionals. Birkhäuser, Basel Math. Reviews 93i:60155

This work is licensed under a Creative Commons Attribution 3.0 License.