Download this PDF file Fullscreen Fullscreen Off
References
-
K. Bahlali (2001), Backward stochastic differential equations with
locally Lipschitz coefficient. C.R.A.S Paris, serie I, 333, 481-486.
Math. Review 2002g:60087
- P. Briand, R. Carmona, (2000), BSDEs with polynomial growth generators.
J. Appl. Math. Stochastic Anal. 13, 3, 207-238.
Math. Review 2001j:60108
- R. Darling, E. Pardoux, (1997), Backward SDE with monotonicity and
random terminal time. Ann. of Probab. 25, 1135-1159.
Math. Review 98k:60095
- A. Dermoune, S. Hamadène, Y. Ouknine, (1999), Backward stochastic
differential equation with local time. Stoch. Stoch. Reports. 66
, 103-119.
Math. Review 2000e:60031
- N. El Karoui, S. Peng, M.C. Quenez, (1997), Backward stochastic differential
equations in finance. Math. Finance. 7, 1-71.
Math. Review 98d:90030
- N. El-Karoui and S. Mazliak eds. Pitman Research Notes in Mathematics.
Series 364.
Math. Review 98d:90030
- S. Hamadène, (1996), Equations différentielles
stochastiques rétrogrades: Le cas localement lipschitzien. Ann.
Inst. Henri Poincaré. 32, 645-660.
Math. Review 97q:60076
- S. Hamadène, (2000), Multidimensional Backward SDE's with Uniformly
Continuous Coefficient. Monte Carlo 2000 conference at Monte Carlo, France,
3-5 jul. 2000, Preprint, Université du Maine. Math.Review number not
available.
- S. Hamadène, J.P. Lepeletier, S. Peng, (1997), BSDE With continuous
coefficients and applications to Markovian nonzero sum
stochastic differential games. in N. El-Karoui and S. Mazliak eds. Pitman Research Notes in Mathematics. Series 364.
Math. Review 1 752 678
- M. Kobylanski, (1997), Résultats d;existence et d'unicité
pour des équations différentielles stochastiques rétrogrades
avec des générateurs à croissance quadratique. C.R.A.S.
Paris, Série 1 Math. 324, 81-86.
Math. Review 97i:60095
- J.P. Lepeltier, J. San Martin, (1998), Existence for BSDE with Superlinear-Quadratic
coefficients. Stoch. Stoch.Reports. 63, 227-240.
Math. Review 9j:60087
- J. Ma, J. Yong (1999), Forward-Backward Stochastic Differential Equations
and their applications. Lectures Note in Mathematics. 1702. Springer.
Math. Review 2000k:60118
- X. Mao, (1995), Adapted solutions of backward stochastic differential
Equations with non-Lipschitz coefficient. Stoch. Proc. Appl. 58
, 281-292.
Math. Review 96f:60099
- E. Pardoux, (1999), BSDE's, weak convergence and homogenization of
semilinear PDEs. In F. Clarke and R. Stern eds. Nonlin. Analy., Diff.
Equa. and Control, Kluwer Acad. Publi. Dordrecht. 503-549.
Math. Review 2000e:60096
- E. Pardoux, S. Peng, (1990), Adapted solution of a backward stochastic
differential equation. Syst. Cont. Letters. 14, 55-61.
Math. Review 91e:60171
- E. Pardoux, S. Peng, (1992), Backward SDEs and quasilinear PDEs.
In Stochastic Partial Differential Equations and their Applications. B.L.
Rozovskii and R. Sowers, eds. Lecture Notes and inform. Sci. 176,
200-217.
Math. Review 93k:60157
- S. Peng, (1991), Probabilistic interpretation for systems of quasilinear
parabolic partial differential equations. Stoch. Stoch. Reports. 37
, 61-74.
Math. Review 93a:35159
- R. Situ (1997), On solutions of backward stochastic differential equations
with jumps and applications. Stoch. Process. Appl. 66, 209--236.
Math. Review 98j:60085

This work is licensed under a Creative Commons Attribution 3.0 License.