Download this PDF file Fullscreen Fullscreen Off
References
- Breiman, L. (1992), Probability, SIAM, Philadelphia. Math. Review 93d:60001
- Brenier, Y. and Benamou, J. D. (1999), A numerical method for the optimal mass transport problem and related problems, Contemporary Mathematics 226, AMS, Providence, 1-11. Math. Review 99j:65151
- Brenier, Y. and Benamou, J. D. (2000), A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math. 84, 375-393. Math. Review 2000m:65111
- Carlen, E. A. (1984), Conservative diffusions, Commun. Math. Phys. 94, 293-315. Math. Review 85m:81050
- Carlen, E. A. (1986), Existence and sample path properties of the diffusions in Nelson's stochastic machanics, Lecture Notes in Mathematics1158, Springer, Berlin Heidelberg New York, 25-51. Math. Review 87f:81030
- c Cinlar, E. and Jacod, J. (1981), Representation of semimartingale Markov processes in terms of Wiener processes and Poisson random measures, Seminar on Stochastic Processes 1981, Birkhauser, Boston Basel Berlin, 159-242. Math. Review 83e:60046
- Dall'Aglio, G. (1991), Fr`echet classes: the beginning, Mathematics and its applications 67, Kluwer Academic Publishers, Dordrecht Boston London,1-12. Math. Review 94c:60021
- Doob, J. L. (1990), Stochastic processes, John Wiley & Sons, Inc., New York. Math. Review 91d:60002
- Evans, L. C. (1998), Partial differential equations, AMS, Providence. Math. Review 99e:35001
- Evans, L. C. and Gangbo, W. (1999), Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137, No. 653. Math. Review 99g:35132
- Fleming, W. H. and Soner, H. M. (1993), Controlled Markov Processes and Viscosity Solutions, Springer, Berlin Heidelberg New York. Math. Review 94e:93004
- Gangbo, W. and McCann, R. J. (1996), The geometry of optimal transportation, Acta Math. 177, 113-161. Math. Review 98e:49102
- Ikeda, N. and Watanabe, S. (1981), Stochastic differential equations and diffusion processes, North-Holland/Kodansha, Amsterdam New York Oxford Tokyo. Math. Review 84b:60080
- Jordan, R, Kinderlehrer, D. and Otto, F. (1998), The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29, 1-17. Math. Review 2000b:35258
- Mikami, T. (1990), Variational processes from the weak forward equation, Commun. Math. Phys. 135, 19-40. Math. Review 92h:81027
- Mikami, T. (2000), Dynamical systems in the variational formulation of the Fokker-Planck equation by the Wasserstein metric, Appl. Math. Optim. 42, 203-227. Math. Review 2002b:60055
- Nelsen, R. B. (1999), An Introduction to Copulas, Lecture Notes in Statistics 139, Springer, Berlin Heidelberg New York. Math. Review 99i:60028
- Otto, F. (2001), The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26, 101-174. Math. Review 2002j:35180
- Quastel, J. and Varadhan, S.R.S. (1997), Diffusion semigroups and diffusion processes corresponding to degenerate divergence form operators, Comm. Pure Appl. Math. 50, 667-706. Math. Review 98b:60141
- Rachev, S. T. and Rüschendorf, L. (1998), Mass transportation problems, Vol. I: Theory, Springer, Berlin Heidelberg New York. Math. Review 99k:28006
- Salisbury, T. S. (1986), An increasing diffusion, Seminar on Stochastic Processes 1984, Birkhauser, Boston Basel Berlin, 173-194. Math. Review 88k:60138

This work is licensed under a Creative Commons Attribution 3.0 License.