Download this PDF file Fullscreen Fullscreen Off
References
- Araujo, A. and Gine, E. (1980) The Central Limit Theorem for Real and Banach Valued Random Variables. John Wiley and Sons. New York. Math Review 83e:60003
- Billingsley, P. (1966) Convergence of types in k-space. Z. Wahrsch. Verw. Gebiete. 5. 175-179. Math Review 33#6665
- Dudley, R.M. (1989) Real Analysis and Probability. Chapman and Hall. New York. Math Review 91g:60001
- Feller, W.(1968) An Introduction to Probability Theory and its Applications, Volume 1. Third Edition. John Wiley and Sons. New York. Math Review 42 #5292
- Feller, W.(1968) An extension of the law of the iterated logarithm to variables without variance. J. Math. Mechan. 18, 343-355. Math Review 38 #1721
- Gine, E. and Mason, D.M. (1998) On the LIL for self-normalized sums of iid random variables. J. Theor. Probab. v. 11 no. 2, 351-370. Math. Review 99e:60082
- Griffin, P.S. and Kuelbs, J.D. (1989) Self normalized laws of the iterated logarithm. Ann. Probab. 17, 1571-1601.Math. Review 92e:60062
- Hahn, M.G. and Klass, M.J. (1980) Matrix normalization of sums of random vectors in the domain of attraction of the multivariate normal. Ann. Probab. 8 (1980), no. 2, 262--280. Math. Review 81d:60030
- Kuelbs, J. and Ledoux M. (1987) Extreme values and the law of the iterated logarithm. Prob. Theory and Rel. Fields. 74, 319-340. Math. Review 87m:60021
- Meerschaert, M. (1988) Regular variation in $\R^k.$ Proc. Amer. Math. Soc. 102, 341-348. Math. Review 96d:60034
-
Meerschaert, Mark M.and Scheffler, Hans-Peter (2001) Limit
distributions for sums of independent random vectors. Heavy tails in theory and
practice. Wiley Series in Probability and Statistics:
Probability and Statistics. John Wiley & Sons, Inc., New York, 2001. Math. Review 2002i:60047 - Pruitt, W.E. (1981) General one sided laws of the iterated logarithm. Ann. Probab. 9, 1-48. Math. Review 82k:60066
- Sepanski, S.J. (1994).Asymptotics for multivariate $t$-statistic and Hotelling's $T\sp 2$-statistic under infinite second moments via bootstrapping. J. Multivariate Anal. 49, no. 1, 41--54. Math. Review 96d:62092
- Sepanski, Steven J. (1994) Necessary and sufficient conditions for the multivariate bootstrap of the mean. Statist. Probab. Lett. 19 , no. 3, 205--216. Math. Review 95d:62067
- Sepanski, Steven J. (2002) Extreme values and the multivariate compact law of the iterated logarithm. J. Theoret. Probab. 14 no. 4, 989--1018. Math. Review 2002j:60052
- Sepanski, S. (2001) A law of the iterated logarithm for multivariate trimmed sums. Preprint.
- Sepanski, Steven J. (1996) Asymptotics for multivariate $t$-statistic for random vectors in the generalized domain of attraction of the multivariate normal law. Statist. Probab. Lett. 30 , no. 2, 179--188. Math. Review 97k:60042

This work is licensed under a Creative Commons Attribution 3.0 License.