Download this PDF file Fullscreen Fullscreen Off
References
- O. Angel, I. Benjamini, and B. Virag. Random walks that avoid their past convex hull. Elec. Comm. Prob. 8(2):6-16, 2003. MR 1 961 285
- R. F. Bass and T. Kumagai. Laws of the iterated logarithm for the range of random walks in two and three dimensions. Ann. Prob. 30:1369--1396, 2002. MR 2003d:60086
- M. Bousquet-Mélou and G. Schaeffer. Walks on the slit plane. Probab. Theory Related Fields 124(3):305--344, 2002. arXiv:math.CO/0012230. MR 1 939 650
- B. Davis. Reinforced random walk. Probab. Theory Related Fields 84(2):203--229, 1990. MR 91a:60179
- B. Davis. Weak limits of perturbed Brownian motion and the equation Yt = Bt + α sups ≤ t Ys + β infs ≤ tYs. Ann. Prob. 24:2007--2023, 1996. MR 97m:60021
- B. Davis. Brownian motion and random walk perturbed at extrema. Probab. Theory Related Fields 113(4):501--518, 1999. MR 2001k:60030
- P. G. Doyle and J. L. Snell. Random Walks and Electric Networks, Mathematical Association of America, 1984. arXiv:math.PR/0001057. MR 89a:94023
- R. Durrett. Probability: Theory and Examples, second edition. Duxbury Press, 1996. 503 pp. MR 98m:60001
- A. Dvoretzky and P. Erdös. Some problems on random walk in space. Proc. 2nd Berkeley Symp., pp. 353--367, 1951. MR 13,852b
- M. L. Glasser and I. J. Zucker. Extended Watson integrals for the cubic lattice. Proc. Natl. Acad. Sci., USA 74:1800-1801, 1977. MR 56 #686
- G. F. Lawler. Intersections of Random Walks. Probability and its Applications. Birkhäuser, Boston, MA, 1991. 219 pp. MR 92f:60122
- G. F. Lawler. A lower bound on the growth exponent for loop-erased random walk in two dimensions. ESAIM Probab. Statist. 3:1--21, 1999. MR 2000g:60078
-
R. Pemantle. Random processes with reinforcement. Preprint, 28 pp.
http://www.math.ohio-state.edu/~pemantle/papers/Papers.html . - M. Perman and W. Werner. Perturbed Brownian motions. Probab. Theory Related Fields 108:357--383, 1997. MR 98i:60081
- O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118:221--288, 2000. arXiv:math.PR/9904022. MR 2001m:60227
- B. Tóth and W. Werner. The true self-repelling motion. Probab. Theory Related Fields 111(3):375--452, 1998. MR 99i:60092

This work is licensed under a Creative Commons Attribution 3.0 License.