Download this PDF file Fullscreen Fullscreen Off
References
- Dawson, D. A.; Fleischmann, K.; Foley, R. D.; Peletier, L. A. A critical measure-valued branching process with infinite mean. Stochastic Anal. Appl. 4 (1986), no. 2, 117--129. Math. Review 87e:60085
- Dawson, Donald A.; Li, Zenghu; Wang, Hao. Superprocesses with dependent spatial motion and general branching densities. Electron. J. Probab. 6 (2001), no. 25, 33 pp. (electronic). Math. Review 2002k:60202
- Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. Math. Review 88a:60130
- Friedman, Avner. Stochastic differential equations and applications. Vol. 1. Probability and Mathematical Statistics, Vol. 28. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Math. Review 58 #13350a
- Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes. Second edition. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. Math. Review 90m:60069
- Kallianpur, Gopinath; Xiong, Jie. Stochastic differential equations in infinite-dimensional spaces. Institute of Mathematical Statistics Lecture Notes---Monograph Series, 26. Institute of Mathematical Statistics, Hayward, CA, 1995. Math. Review 98h:60001
- Skoulakis, Georgios; Adler, Robert J. Superprocesses over a stochastic flow. Ann. Appl. Probab. 11 (2001), no. 2, 488--543. Math. Review 2002e:60081
- Varadhan, S. R. S. Lectures on diffusion problems and partial differential equations. With notes by Pl. Muthuramalingam and Tara R. Nanda. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 64. Tata Institute of Fundamental Research, Bombay, 1980. Math. Review 83j:60087
- Wang, H. A class of measure-valued branching diffusions in a random medium. Stochastic Anal. Appl. 16 (1998), no. 4, 753--786. Math. Review 99e:60194
- Wang, Yong-Jin. A proof of the persistence criterion for a class of superprocesses. J. Appl. Probab. 34 (1997), no. 2, 559--563. Math. Review 98g:60155
- Wong, Eugene; Zakai, Moshe. On the relation between ordinary and stochastic differential equations. Internat. J. Engrg. Sci. 3 1965 213--229. Math. Review 32 #505
- Xiong, Jie. A stochastic log-Laplace equation. To appear in Ann. Probab. (2004).
- Xiong, Jie. The sigma-finite invariant measures for diffusion processes. (Chinese) Beijing Daxue Xuebao 24 (1988), no. 3, 287--290. Math. Review 90d:60062

This work is licensed under a Creative Commons Attribution 3.0 License.