Download this PDF file Fullscreen Fullscreen Off
References
- Michael Aizenman and Charles M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys 36(1-2):107-143, 1984. Math. Review 86h:82045
- F. Delyon. Taille, forme et nombre des amas dans les problemes de percolation. These de 3eme cycle, Universite Pierre et Marie Curie, Paris, 1980.
- A. Telcs. Random walks on graphs, electric networks and fractals. Prob. Th. Rel. Fields 82 (1989), 435-451. Math. Review 90h:60065
- S. Flesia, D.S. Gaunt, C.E. Soteros and S.G.Whittington. Statistics of collapsing lattice animals. J. Phys. A 27(17): 5831-5846, 1991. Math. Review unavailable.
- Alan Hammond. A lattice animal approach to percolation. J. Phys. A 27(17): 5831-5846, 1991. Math. Review unavailable.
- Harry Kesten and Yu Zhang. The probability of a large finite cluster in supercritical Bernoulli percolation. Ann. Probab. 18 (2): 537-555, 1990 . Math. Review unavailable.
- Neal Madras. A rigorous bound on the critical exponent for the number of lattice tress, animals, and polygons. J. Statist. Phys. 78(3-4): 681-699, 1995.. Math. Review 95m:82076

This work is licensed under a Creative Commons Attribution 3.0 License.