Download this PDF file Fullscreen Fullscreen Off
References
- O. Biham, A. A. Middleton, and D. Levine. Self organization and a dynamical transition in traffic flow models. Physical Review A, 46:R6124, 1992.
- B. Bollobas and O. Riordan. A short proof of the Harris-Kesten theorem. Bulletin of the London Mathematical Society. To appear.
- R. M. D'Souza. Geometric structure of coexisting phases found in the Biham-Middleton-Levine traffic model. Phys. Rev. E. To appear.
- Durrett, Richard. Oriented percolation in two dimensions. Ann. Probab. 12 (1984), no. 4, 999--1040. MR0757768
- Friedgut, Ehud; Kalai, Gil. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124 (1996), no. 10, 2993--3002. MR1371123
- Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339
- Harris, T. E. A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 1960 13--20. MR0115221
- Liggett, T. M.; Schonmann, R. H.; Stacey, A. M. Domination by product measures. Ann. Probab. 25 (1997), no. 1, 71--95. MR1428500
- Winkler, Peter. Mathematical puzzles: a connoisseur's collection. A K Peters, Ltd., Natick, MA, 2004. xii+163 pp. ISBN: 1-56881-201-9 MR2034896

This work is licensed under a Creative Commons Attribution 3.0 License.