Motion of a Rigid Body under Random Perturbation
Longmin Wang (Nankai University, P. R. China)
Abstract
We use stochastic analysis to study the random motion of a rigid body under a white noise perturbation. We obtain a formula for the angular velocity in an average sense and discuss the stability near a principle axis.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 235-243
Publication Date: December 13, 2005
DOI: 10.1214/ECP.v10-1163
References
- Arnold, V. I. Mathematical methods of classical mechanics. Translated from the Russian by K. Vogtmann and A. Weinstein. Graduate Texts in Mathematics, 60. Springer-Verlag, New York-Heidelberg, 1978. x+462 pp. ISBN: 0-387-90314-3 MR0690288
- Helgason, Sigurdur. Differential geometry, Lie groups, and symmetric spaces. Pure and Applied Mathematics, 80. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. xv+628 pp. ISBN: 0-12-338460-5 MR0514561
- Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes. Second edition. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. xvi+555 pp. ISBN: 0-444-87378-3 MR1011252
- Liao, Ming. Random motion of a rigid body. J. Theoret. Probab. 10 (1997), no. 1, 201--211. MR1432623

This work is licensed under a Creative Commons Attribution 3.0 License.