Download this PDF file Fullscreen Fullscreen Off
References
- Ali Khan, T. and Neininger, R. Probabilistic analysis for randomized game tree evaluation. Mathematics and computer science. III , 163-174, Trends Math., Birkhäuser, Basel, 2004. Math. Review 2005g:68148
- Devroye, L. and Kamoun, O. Random minimax game trees. Random discrete structures (Minneapolis, MN, 1993) , 55-80, IMA Vol. Math. Appl., 76, Springer, New York, 1996. Math. Review 97b:68203
- Karp, R.M. and Zhang, Y. Bounded branching process and AND/OR tree evaluation. Random Structures Algorithms 7 (1995), 97-116. Math. Review 97d:60136
- Knuth, D.E. and Moore, R.W. An analysis of alpha-beta pruning. Artificial Intelligence 6 (1975), 293-326. Math. Review 52 #9714
- Nau, D.S. The last player theorem. Artificial Intelligence 18 (1982), 53-65. Math. Review 83f:68109
- Nau, D.S. An investigation of the causes of pathology in games. Artificial Intelligence 19 (1982), 257-278. Zentralblatt MATH 0503.68070
- Nau, D.S. Pathology on game trees revisited, and an alternative to minimaxing. Artificial Intelligence 21 (1983), 221-244. Math. Review 84k:68058
- Pearl, J. Asymptotic properties of minimax trees in game-searching procedures. Aritificial Intelligence 14 (1980), 113-126. Math. Review 81i:90208
- Saks, M. and Wigderson, A. Probabilistic boolean decision trees and the complexity of evaluating game trees. Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science , 29-38, Toronto, Ontario, 1986.
- Snir, M. Lower bounds on probabilistic linear decision trees. Theor. Comput. Sci. 38 (1985), 69-82. Math. Review 87g:68028
- Zhang, Y. The variance of two game tree algorithms. J. Algorithms 28 (1998), 21-39. Math. Review 99b:68169

This work is licensed under a Creative Commons Attribution 3.0 License.