Download this PDF file Fullscreen Fullscreen Off
References
- R.H. Cameron and W.T. Martin. The Wiener measure of Hilbert neighborhoods in the space of real continuous functions. J. Math. Phys. Mass. Inst. Tech. 23 (1944), 195--209. Math. Review MR0011174 (6,132a)
- R. H. Cameron and W. T. Martin. Transformations of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc. 58 (1945), 184--219. Math. Review MR0013240 (7,127c)
- T. Hida. Quadratic functionals of Brownian motion. J. Multivariate Anal. 1 (1971), no. 1, 58--69. MR0301806 (46 #961)
- L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Second edition. Springer Study Edition. Springer-Verlag, Berlin, 1990. xii+440 pp. ISBN: 3-540-52343-X Math. Review MR1065136 (91m:35001b)
- N. Ikeda, S. Kusuoka, and S.Manabe. Lévy's stochastic area formula for Gaussian processes. Comm. Pure Appl. Math. 47 (1994), no. 3, 329--360. Math. Review MR1266245 (95h:60086)
- N. Ikeda and S. Manabe. Asymptotic formulae for stochastic oscillatory integrals. Asymptotic problems in probability theory: Wiener functionals and asymptotics (Sanda/Kyoto, 1990), 136--155, Pitman Res. Notes Math. Ser., 284, Longman--Sci. Tech., Harlow, 1993. Math. Review MR1354166 (97j:60098)
- N. Ikeda and S. Manabe. Van Vleck-Pauli formula for Wiener integrals and Jacobi fields. Itô's stochastic calculus and probability theory, 141--156, Springer, Tokyo, 1996. Math. Review MR1439522 (98g:81110)
- P. Lévy. Wiener's random function, and other Laplacian random functions. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 171--187. University of California Press, Berkeley and Los Angeles, 1951. Math. Review MR0044774 (13,476b)
- P. Malliavin and S. Taniguchi. Analytic functions, Cauchy formula and stationary phase on a real abstract Wiener space. J. Funct. Anal. 143 (1997), no. 2, 470--528. Math. Review MR1428825 (98e:60088)
- H. Matsumoto and S. Taniguchi. Wiener functionals of second order and their Lévy measures. Electron. J. Probab. 7 (2002), No. 14, 30pp. (electronic). Math. Review MR1921743 (2003f:60145)
- H. Sugita and S. Taniguchi. Oscillatory integrals with quadratic phase function on a real abstract Wiener space. J. Funct. Anal. 155 (1998), no. 1, 229--262. Math. Review MR1623162 (99e:60126)
- H. Sugita and S. Taniguchi. A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure. Kyushu J. Math. 53 (1999), no. 1, 151--162. Math. Review MR1678030 (2000b:28015)
- S. Taniguchi. Lévy's stochastic area and the principle of stationary phase. J. Funct. Anal. 172 (2000), no. 1, 165--176. MR1749870 (2001g:60135)
- S. Taniguchi. Stochastic oscillatory integrals: Asymptotics and exact expressions for quadratic phase function. Stochastic analysis and mathematical physics (SAMP/ANESTOC 2002), 165--181, World Sci. Publishing, River Edge, NJ, 2004. Math. Review MR2115935 (2006a:81073)
- S. Watanabe. Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab. 15 (1987), no. 1, 1--39. Math. Review MR0877589 (88h:60111)

This work is licensed under a Creative Commons Attribution 3.0 License.