Download this PDF file Fullscreen Fullscreen Off
References
- S. G. Bobkov, I. Gentil, and M. Ledoux. Hypercontractivity of Hamilton-Jacobi equations. Journal de Mathématiques Pures et Appliquées 80(7) (2001), 669-696. Math. Review MR1846020 (2003b:47073)
- F. Bolley, A. Guillin, and C. Villani. Quantitative concentration inequalities for empirical measures on non-compact spaces. To appear in Prob. Th. Rel. Fields. (2005). Math. Review number not available.
- F. Bolley and C. Villani. Weighted Csiszar-Kullback-Pinsker inequalities and applications to transportation inequalities. Annales de la Faculté des Sciences de Toulouse 14 (2005), 331-352. Math. Review MR2172583
- V. V. Buldygin and Yu.V. Kozachenko. Metric characterization of random variables and random processes. Translations of Mathematical Monographs, 188. American Mathematical Society Math. Review MR1743716 (2001g:60089)
- P. Cattiaux and N. Gozlan. Deviations bounds and conditional principles for thin sets. To appear in Stoch. Proc. Appl. (2005). Math. Review number not available.
- P. Cattiaux and A. Guillin. Talagrand’s like quadratic transportation cost inequalities. Preprint. (2004). Math. Review number not available.
- A. Dembo and O. Zeitouni. Large deviations techniques and applications. Second edition. Applications of Mathematics 38. Springer Verlag (1998).Math. Review MR1619036 (99d:60030)
- H. Djellout, A. Guillin and L. Wu. Transportation cost-information inequalities for random dynamical systems and diffusions. Annals of Probability, 32(3B) (2004), 2702–2732. Math. Review MR2078555 (2005i:60031)
- I. Gentil, A. Guillin and L. Miclo. Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields 133 (3) (2005), 409-436. Math. Review MR2198019
- N. Gozlan. Conditional principles for random weighted measures. ESAIM Probab. Stat. 9 (2005), 283-306 (electronic). Math. Review MR2174872
- N. Gozlan. Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. PhD Thesis, Université Paris 10-Nanterre, (2005). Math. Review number not available.
- N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities. Preprint. (2005). Math. Review number not available.
- Yu. V. Kozachenko and E. I. Ostrovskii. Banach spaces of random variables of sub-Gaussian type. (Russian) Theor. Probability and Math. Statist. 3 (1986), 45-56. Math. Review MR0882158 (88e:60009)
- K. Marton. A simple proof of the blowing-up lemma. IEEE Trans. Inform. Theory. 32(3) (1986), 445-446.Math. Review MR0838213 (87e:94018)
- K. Marton. Bounding $\overline{d}$-distance by informational divergence: a method to prove measure concentration. Ann. Probab. 24(2) (1996), 857-866. Math. Review MR1404531 (97f:60064)
- F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2) (2000), 361-400. Math. Review MR1760620 (2001k:58076)
- Talagrand, M. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6(3) (1996), 587-600. Math. Review MR1392331 (97d:60029)
- C. Villani. Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Math. Review MR1964483 (2004e:90003)

This work is licensed under a Creative Commons Attribution 3.0 License.