Download this PDF file Fullscreen Fullscreen Off
References
- B. Bollobas and O. Riordan. The critical probability for random Voronoi percolation in the plane is 1/2. Preprint available from arXiv.org:math/0410336
- B. Bollobas and O. Riordan. Sharp thresholds and percolation in the plane. Preprint available from arXiv.org:math/0412510
- G. Grimmett. Percolation (second edition), Springer (1999). Math. Review 2001a:60114
- J.M. Hammersley and D.J.A. Welsh. First-passage percolation, sub-additive process, stochastic network and generalized renewal theory. Springer-Verlag (1965), 61-110. Math. Review 33 #6731
- H. Kesten. Aspects of first-passage percolation. Lectures Notes in Math. 1180, Springer-Verlag (1986), 125-264. Math. Review 88h:60201
- T.M. Ligget, R.H. Schonmann and A.M. Stacey. Domination by product measures. Ann. Probab. 25 (1997), 71-95. Math. Review 98f:60095
- J. Moller. Lectures on random Voronoi tessellations. Lectures Notes in Stat. 87, Springer-Verlag (1991).
- L.P.R. Pimentel. Competing growth, interfaces and geodesics in first-passage percolation on Voronoi tilings. Phd Thesis, IMPA, Rio de Janeiro (2004).
- M.Q. Vahidi-Asl and J.C. Wierman. First-passage percolation on the Voronoi tessellation and Delaunay triangulation. Random Graphs 87 (M. Karonske, J. Jaworski and A. Rucinski, eds.) Wiley (1990), 341-359. Math. Review 92b:82108
- M.C. Vahidi-Asl and J.C. Wierman. A shape result for first-passage percolation on the Voronoi tessellation and Delaunay triangulation. Random Graphs 89 (A. Frieze and T. Luczak, eds.), Wiley (1992), 247-262. Math. Review 93e:60199
- A. Zvavitch. The critical probability for Voronoi percolation. MSc. thesis, Weizmann Institute of Science (1996).

This work is licensed under a Creative Commons Attribution 3.0 License.