Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices
Arnab Sen (University of California, Berkeley)
Abstract
Suppose $s_n$ is the spectral norm of either the Toeplitz or the Hankel matrix whose entries come from an i.i.d. sequence of random variables with positive mean $\mu$ and finite fourth moment. We show that $n^{-1/2}(s_n-n\mu)$ converges to the normal distribution in either case. This behaviour is in contrast to the known result for the Wigner matrices where $s_n-n\mu$ is itself asymptotically normal.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 21-27
Publication Date: February 13, 2007
DOI: 10.1214/ECP.v12-1243
References
- Bai, Z. D.; Yin, Y. Q. Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16 (1988), no. 4, 1729--1741. MR0958213 (90a:60069)
- Bryc, Wlodzimierz; Dembo, Amir; Jiang, Tiefeng. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34 (2006), no. 1, 1--38. MR2206341 (2007c:60039)
- Hammond, Christopher; Miller, Steven J. Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab. 18 (2005), no. 3, 537--566. MR2167641 (2006h:15023)
- Horn, Roger A.; Johnson, Charles R. Matrix analysis. Cambridge University Press, Cambridge, 1985. xiii+561 pp. ISBN: 0-521-30586-1 MR0832183 (87e:15001)
- Silverstein, Jack W. The spectral radii and norms of large-dimensional non-central random matrices. Comm. Statist. Stochastic Models 10 (1994), no. 3, 525--532. MR1284550 (95k:60086)
- Wigner, Eugene P. Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. (2) 62 (1955), 548--564. MR0077805 (17,1097c)
- Wigner, Eugene P. On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67 1958 325--327. MR0095527 (20 #2029)

This work is licensed under a Creative Commons Attribution 3.0 License.