Download this PDF file Fullscreen Fullscreen Off
References
- Andrews, George E.; Askey, Richard; Roy, Ranjan. Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999. xvi+664 pp. ISBN: 0-521-62321-9; 0-521-78988-5 MR1688958 (2000g:33001)
- Biane, Philippe; Pitman, Jim; Yor, Marc. Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 4, 435--465 (electronic). MR1848256 (2003b:11083)
- Chaumont, L.; Yor, M. Exercises in probability. A guided tour from measure theory to random processes, via conditioning. Cambridge Series in Statistical and Probabilistic Mathematics, 13. Cambridge University Press, Cambridge, 2003. xvi+236 pp. ISBN: 0-521-82585-7 MR2016344 (2004m:60001)
- Lamperti, John. An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 1958 380--387. MR0094863 (20 #1372)
- Lebedev, N. N. Special functions and their applications. Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication. Dover Publications, Inc., New York, 1972. xii+308 pp. MR0350075 (50 #2568)
- Lévy, Paul. OE uvres de Paul Lévy. Vol. VI. (French) [Works of Paul Levy. Vol. VI] Théorie des jeux. [Game theory] Published under the direction of Daniel Dugué with the collaboration of Paul Deheuvels and Michel Ibéro. Gauthier-Villars, Paris, 1980. 423 pp. (1 plate). ISBN: 2-04-010962-5 MR0586767 (83c:01070)
- Pitman, Jim; Yor, Marc. Infinitely divisible laws associated with hyperbolic functions. Canad. J. Math. 55 (2003), no. 2, 292--330. MR1969794 (2004c:11151)
- Pitman, Jim; Yor, Marc. Level crossings of a Cauchy process. Ann. Probab. 14 (1986), no. 3, 780--792. MR0841583 (87j:60106)
- J.P. Serre, Cours d'arithmÃtique, Collection SUP, P.U.F., Paris, 1970.
- H. M. Srivasta, Junesang Choi, Series associated with the Zeta and Related Functions, 2006, Kluwer Academic Publishers, Dordrecht, 2001.

This work is licensed under a Creative Commons Attribution 3.0 License.